• 제목/요약/키워드: Core and exterior parts

검색결과 5건 처리시간 0.024초

케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구 (A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel)

  • 한풍규;남궁혁준;조원국
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.66-72
    • /
    • 2003
  • 우주발사체의 2단용 엔진으로 10톤급 케로신 액체로켓엔진에 대한 냉각 기구로서, 재생냉각과 막냉각을 고려한 냉각특성에 대한 해석전 연구를 수행하였다. 연소기 내에서 연소 가스의 유동이 축방향으로 층류화되어 있다는 개념하에, 엔진 단면을 서로 독립적인 중심부와 외곽부로 나누며, 외곽부에는 여분의 연료를 분무시킴으로써 연소가스 온도를 낮추어 냉각채널로 전달되는 열유속량과 벽면 온도를 감소시킬 수 있었으며, 엔진의 열적 안정성을 향상시킬 수 있었다.

케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구 (Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel)

  • 남궁혁준;한풍규;조원국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.78-82
    • /
    • 2003
  • 우주발사체의 2단용 엔진으로 10톤급 케로신 재생 냉각 방식의 액체로켓엔진에 대한 보조 냉각 기구로서, 막냉각을 고려한 냉각특성에 대한 해석적 연구를 수행하였다. 연소기내에서 연소가스의 유동이 축방향으로 층류화되어 있다는 개념하에, 엔진 단면을 서로 독립적인 중심부와 외곽부로 나누며, 외곽부에는 여분의 연료를 분무시킴으로써 연소가스 온도를 낮추어 냉각채널로 전달되는 열유속량과 벽면 온도를 감소시킬 수 있었으며, 엔진의 열적 안정성을 향상시킬 수 있었다.

  • PDF

시각적 효과를 위한 건물 외관 색채 연구 (A Study on the Color of the Building Exterior for Visual Effects)

  • 한혜련
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.257-258
    • /
    • 2005
  • The university building which is located in Daehak-ro where the commercial buildings are. The color of the building exterior and the signs are various to distinguish. To recognize the building exterior among the surrounding areas, it needs visual and bright color on it. The blue and white selected from the color of university identity. The core of the building is treated as a tower In vertically and white color is painted. And the rest parts of the building are treated horizontally and blue color is painted. The color of the building exterior shows the visual effects not only symbolism but attention.

  • PDF

Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars

  • Azariani, Hossein Rezaee;Esfahani, M. Reza;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.83-98
    • /
    • 2018
  • This research was conducted to study the behavior of exterior concrete beam-column joints with reinforced shape memory alloy (SMA) bars tested under cyclic loading. These bars benefit from superelastic behavior and can stand high loads without residual strains. The experimental part of the study, 8 specimens of exterior concrete beam-column joints were made and tested. Two different types of concrete with 30 and 45 MPa were used. Four specimens contained SMA bars and 4 specimens contained steel bars in beam-column joints. Furthermore, different transverse reinforcements were used in beams investigate the effects of concrete confinement. Specimens were tested under cyclic loading. Results show that SMA bars are capable of recentering to their original shape after standing large displacements. Due to the superelastic behavior of SMA bars, cracks at the joint core vanish under cyclic loading. As the cyclic loading increased, bending failure occurred in the beam outside the joint core. In the analytical parts of the study, specimens were simulated using the SeismoStruct software. Experimental and analytical results showed a satisfactory correlation. Plastic hinge length at the beam joint for specimens with SMA and steel bars was calculated by empirical equations, experimental and analytical results. It was shown that Paulay's and Priestley's equations are appropriate for concrete beam-column joints in both types of bars.

압축공기를 사용한 사출성형품의 싱크마크 저감 및 가스 벤팅에 관한 연구 (Study on sink-mark reduction and gas venting of injection molded parts using compressed air)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제18권3호
    • /
    • pp.71-80
    • /
    • 2024
  • Sink marks are a common defect that occurs due to differences in shrinkage in areas with significant thickness variations in injection-molded parts. In this paper, we investigated the reduction of sink marks and the improvement of gas venting in injection molding processes using External Gas Injection (EGI). A mold was designed with considerations for EGI core pins, O-ring grooves to prevent gas leakage, and ejector-pin sealing. The sink marks were then examined through a series of experiments. When the delay time for injecting compressed air was set to 2.2 seconds, the depth of the sink marks was minimized. However, when the delay time was either too short or too long, the depth of the sink marks increased. There was almost no difference in the depth of the sink marks at discharge pressures of 30 and 50 bar of compressed air, but the sink marks were significantly reduced at a discharge pressure of 70 bar. Under the conditions of a 2.2-second delay time and a supply pressure of 70 bar, the smallest depth, 0.594 ㎛, was observed when the supply time was between 6 and 7 seconds. This represents a reduction of approximately 94% compared to the sink mark depth of 10.078 ㎛ observed with conventional injection molding. To verify the gas venting effect of compressed air injection, an experiment was conducted using non-dried PC. The silver streaks that appeared on the exterior of the molded part were completely eliminated when the air supply pressure was set to 20 bar. This indicates that by injecting compressed air into the mold cavity before injecting the resin, the appearance quality of the injection-molded part can be improved without the need to dry the resin in advance.