• Title/Summary/Keyword: Core Pump System

Search Result 61, Processing Time 0.015 seconds

Rectal Temperature Maintenance Using a Heat Exchanger of Cardioplegic System in Cardiopulmonary Bypass Model for Rats (쥐 심폐바이패스 모델에서 심정지액 주입용 열교환기를 이용한 직장체온 유지)

  • Choi Se-Hoon;Kim Hwa-Ryong;Paik In-Hyuck;Moon Hyun-Jong;Kim Won-Gon
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.505-510
    • /
    • 2006
  • Background: Small animal cardiopulmonary bypass (CPB) model would be a valuable tool for investigating path-ophysiological and therapeutic strategies on bypass. The main advantages of a small animal model include the reduced cost and time, and the fact that it does not require a full scale operating environment. However the rat CPB models have a number of technical limitations. Effective maintenance and control of core temperature by a heat exchanger is among them. The purpose of this study is to confirm the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. Material and Method: The miniature circuit consisted of a reservoir, heat exchanger, membrane oxygenator, roller pump, and static priming volume was 40 cc, Ten male Sprague-Dawley rats (mean weight 530 gram) were divided into two groups, and heat exchanger (HE) group was subjected to CPB with HE from a cardioplegia system, and control group was subjected to CPB with warm water circulating around the reservoir. Partial CPB was conducted at a flow rate of 40 mg/kg/min for 20 min after venous cannulation (via the internal juglar vein) and arterial cannulation (via the femoral artery). Rectal temperature were measured after anesthetic induction, a ter cannulation, 5, 10, 15, 20 min after CPB. Arterial blood gas with hematocrit was also analysed, 5 and 15 min after CPB. Result: Rectal temperature change differed between the two groups (p<0.01). The temperatures of HE group were well maintained during CPB, whereas control group was under progressive hypothermia, Rectal temperature 20 min after CPB was $36.16{\pm}0.32^{\circ}C$ in the HE group and $34.22{\pm}0.36^{\circ}C$ in the control group. Conclusion: We confirmed the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. This model would be a valuable tool for further use in hypothermic CPB experiment in rats.