• Title/Summary/Keyword: Core Concrete Interaction

Search Result 55, Processing Time 0.021 seconds

Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns

  • El-Heloua, Rafic G.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.245-260
    • /
    • 2015
  • In this study, nominal moment-axial load interaction diagrams, moment-curvature relationships, and ductility of rectangular hybrid beam-column concrete sections are analyzed using the modified Hognestad concrete model. The hybrid columns are primarily reinforced with steel bars with additional Glass Fiber Reinforced Polymer (GFRP) control bars. Parameters investigated include amount, pattern, location, and material properties of concrete, steel, and GFRP. The study was implemented using a user defined comprehensive $MATLAB^{(R)}$ simulation model to find an efficient hybrid section design maximizing strength and ductility. Generating lower bond stresses than steel bars at the concrete interface, auxiliary GFRP bars minimize damage in the concrete core of beam-column sections. Their usage prevents excessive yielding of the core longitudinal bars during frequent moderate cyclic deformations, which leads to significant damage in the foundations of bridges or beam-column spliced sections where repair is difficult and expensive. Analytical results from this study shows that hybrid steel-GFRP composite concrete sections where GFRP is used as auxiliary bars show adequate ductility with a significant increase in strength. Results also compare different design parameters reaching a number of design recommendations for the proposed hybrid section.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

The structural performance of axially loaded CFST columns under various loading conditions

  • Huang, Fuyun;Yu, Xinmeng;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.451-471
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have been used widely in high-rise buildings and bridges due to the efficiency of structurally favourable interaction between the steel tube and the concrete core. In the current design codes only one loading condition in the column members is considered, i.e., the load is applied on the steel tube and concrete core at the same time. However, in engineering practice the tube structures may be subjected to various loading conditions such as loading on the concrete core only, preloading on the steel tube skeleton before filling of concrete core, and so on. In this research, a series of comparative experiments were carried out to study the structural performance of concrete filled circular steel tube columns subject to four concentric loading schemes. Then, a generalized prediction method is developed to evaluate the ultimate load capacity of CFST columns subject to various loading conditions. It is shown that the predictions by the proposed method agree well with test results.

Seismic performances of centrifugally-formed hollow-core precast columns with multi-interlocking spirals

  • Hwang, Jin-Ha;Lee, Deuck Hang;Oh, Jae Yuel;Choi, Seung-Ho;Kim, Kang Su;Seo, Soo-Yeon
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1259-1274
    • /
    • 2016
  • A precast composite column system has been developed in this study by utilizing multi interlocking spiral steel into a centrifugally-formed hollow-core precast (CHPC) column. The proposed hybrid column system can have enhanced performances in the composite interaction behavior between the hollowed precast column and cast-in-place (CIP) core-filled concrete, the lap splice performance of bundled bars, and the confining effect of concrete. In the experimental program, reversed cyclic loading tests were conducted on a conventional reinforced concrete (RC) column fabricated monolithically, two CHPC columns filled with CIP concrete, and two steel-reinforced concrete (SRC) columns. It was confirmed that the interlocking spirals was very effective to enhance the structural performance of the CHPC column, and all the hollow-core precast column specimens tested in this study showed good seismic performances comparable to the monolithic control specimen.

Compressive behavior of short fibrous reinforced concrete members with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.649-669
    • /
    • 2011
  • In this paper an analytical model is presented that addresses the compressive response of short-fiber reinforced concrete members (FRC) with hooked steel fibers. This model is applicable to a wide range of concrete strengths and accounts for the interaction between the cover spalling and the concrete core confinement induced by transverse steel stirrups and also for buckling of longitudinal reinforcing bars. The load-shortening curves generated here analytically fit existing experimental data well.

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.