• Title/Summary/Keyword: Core Concrete

Search Result 785, Processing Time 0.024 seconds

An Experimental Study on Estimation of Strength in High Strength Concrete Structure Using Simple Adiabatic Curing (단열양생을 이용한 고강도 콘크리트 압축강도 추정에 관한 실험적 연구)

  • Cho Kyu Hyun;Kim Je Sub;Hwang Byung Jun;Gong Min Ho;Back Min Soo;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.450-453
    • /
    • 2004
  • The present study is a basic experiment on the estimation of the compression strength of high strength concrete, aiming at estimating the compression strength of mass test pieces of high strength concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created adiabatic curing tank and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

  • PDF

Stress-Strain Curve of Concrete Confined with both Steel Ties and FRP Composites (복합재료에 의하여 구속된 콘크리트의 응력-변형률 곡선 예측)

  • Lee Jung-Yoon;Hwang Hyun-Bok;Oh Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.64-67
    • /
    • 2004
  • In recent years, the use of FRP composites to repair and strengthen existing reinforced concrete (RC) structures has been widely used. When the columns of existing RC structures are wrapped with FRP composites, the core concrete of such columns is confined not only by the FRP composites but also by the existing steel reinforcing ties (or spirals). Therefore, it is necessary to understand correctly the compressive response of concrete confined with both steel spirals and FRP composites in order to predict the behavior of such RC columns. This paper proposes a model to predict the compressive stress-strain curves of concrete confined with FRP and steel reinforcing ties.

  • PDF

The Cooling Effect of Pipe Cooling in Mass Concrete Structures (매스 콘크리트 구조물의 파이프 쿨링에 의한 냉각효과)

  • 오병환;신경준;차수원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.299-304
    • /
    • 1999
  • Cracking of concrete is one of the main issues of structural design next to ensuring the load-bearing capacity. Thermal cracking is a recurring concern in the production of concrete structures in particular when large, massive structures are considered. Thremal stresses arise from the differential temperature distribution either within s sturcture or between newly cast sectons and adjoining older parts. There are many different methods of reducing thermal stresses. A method often used for reducing temperature within a structure, is to cool the inner core with embedded cooling pipes. In this study, finite element method is employed for thermal analysis of concrete structures. To calculate water temperature variation in pipe, the conservation of thermal energy in internal flow was adopted. The cooling effect of pipe cooling is studied with several factors like convective coefficient, water temperature, concrete heat characteristics

  • PDF

Creep Properties of Ultra High Strength Concrete at High Temperature under Loading (재하와 가열을 받은 초고강도 콘크리트의 크리프 특성)

  • Lee, Young-Wook;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.286-287
    • /
    • 2014
  • Performance degradation of Ultra High Strength Concrete occurs more than that of normal strength concrete at high temperature. Thus, strain of concrete subjected to high temperature and loading is one of the core assessment items for evaluating performance of structures. Therefore, in this study, creep of ultra high strength concrete subjected to various temperature conditions and 25%, 40% loading was evaluated. As the results, Creep strain increased with increase of temperature and loading. Creep strain of concrete at high temperature is influenced by loading.

  • PDF

Development of concrete pumping technology for construction of high-rise building using electromagnetic field (전자기장을 활용한 초고층 건축물 콘크리트 압송기술개발)

  • Kim, Woo-Jea;Kwon, Seung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.4-5
    • /
    • 2018
  • Recently, high-strength concrete used for shortening the construction time of high-rise building construction, Concrete pumping technology is emerging as the core technology of high-rise buildings. In this paper, we have started to study the use of electromagnetic field as a method to increase the efficiency of the lubricating layer between the inside of the pipe and concrete, which has been established as the most important factor determining the pumping performance. The pumping performance improvement effect of concrete strength was verified and basic research was carried out to utilize it as a method to increase the efficiency of pumping in field application. In the related work, the effect of the electromagnetic field was verified by conducting a mock-up performance evaluation (horizontal 300 m) of the pumping force by the concrete strength.

  • PDF

Evaluation of Concrete Degradation Under Disposal Environment

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.260-268
    • /
    • 1997
  • The effects of three mechanisms, calcium depletion, sulphate and carbonate penetration, on the concrete degradation have been studied. The shrinking core model (SCM) and the HYDROGEOC. HEM (HGC) model have been applied to evaluate how fast the mechanisms proceed. The SCM is an analytical approximation model and the HGC is a numerical mass transport model coupled with chemical reaction. The SCM leads to more conservative results than the HGC, and turns out to be very useful in the viewpoint of simplicity and conservatism. During 300 years, calcium has been depleted within 10 cm from the concrete outer surface, and sulphate has penetrated less than 13.5 cm into the concrete. Carbonate has not penetrated own 7 cm into the concrete in contact with the bentonite, and, furthermore, its penetration into the concrete with the groundwater is negligible. Conclusively, the concrete is expected to maintain its integrity for at least 300 years that are regarded as institutional control period of intermediate and low-level radioactive waste repository.

  • PDF

Creep analysis of CFT columns subjected to eccentric compression loads

  • Han, Bing;Wang, Yuan-Feng;Wang, Qian;Zhang, Dian-Jie
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.291-304
    • /
    • 2013
  • By considering the creep characteristics of concrete core under eccentric compression, a creep model of concrete filled steel tubes (CFT) columns under eccentric compressive loads is proposed based on the concrete creep model B3. In this proposed model, a discrete element method is introduced to transform the eccentric loading into axial loading. The validity of the model is verified by comparing the predicting results with the published creep experiments results on CFT specimens under compressive loading, together with the predicting values based on other concrete creep models, such as ACI209, CEB90, GL2000 and elastic continuation and plastic flow theory. By using the proposed model, a parameters study is carried out to analysis the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio, aggregate to cement ratio), steel ratio and eccentricity ratio, on the creep of CFT columns under eccentric compressive loading.

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong;Liu, Jiepeng
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

A review on performance of composite structures combining UHPC and normal concrete

  • Thanh Vy Nguyen;TuanAnh Nguyen;An Hoang Le
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.149-161
    • /
    • 2024
  • In the world, the construction science and technology industry has developed strongly thanks to the application of Ultra-High Performance Concrete (UHPC) technology, with a strength greater than 150 Mpa and unprecedented durability. compared to previous materials. However, this technology can build special structures but has limited use in construction because it is not commercially feasible to replace regular concrete in most structural types due to material costs. high, lack of availability, limited design standards, complex manufacturing and maintenance techniques. This article examines the composition of UHPC materials and their performance in composite structures with conventional concrete, a promising choice for promoting the development of UHPC technology in construction. It is based on the combined use of UHPC as a covering layer around normal concrete or as an inner core to increase the strength of normal concrete, create a slender structure and reduce the cost and repair of construction works. Construction and transport infrastructure are degraded. Manufacturing costs are expected to be reduced with composite construction due to the advantages of combined materials.

A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement (혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구)

  • 송용순;노재호;강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.281-289
    • /
    • 1998
  • This study has been performed to test the flowability and filling ability of high flowing concrete as well as distribution of aggregate and pore of core specimen, heat of hydration, compressive strength and core strength of concrete. In addition, the resistance to chloride ion penetration and chemical solutionof concrete was tested in order to evaluate the resistance to sea water of concrete and its application of high flowing concrete using blended low heat cement in the field of Seohae Grand Bridge. The properties of high flowing concrete with blended low heat cement were compared with ordinary 25-240-15 concrete using Type V cement. As the results of this study, the flowability and filling ability of high flowing concrete with blended low heat cement is satisfied without vibration. Though the cement content of high flowing concrete with blended low heat cement was 400kg/m$^2$, the rising temperature of it was relatively lower than that of the ordinary 25-240-15 concrete with Type V cement. Also, the compressive of high flowing concrete with blended low heat cement is similar to that of the ordinary 25-240-15 concrete with Type V cement.