• Title/Summary/Keyword: Core/shell structure

Search Result 262, Processing Time 0.034 seconds

Low-temperture Synthesis of CdTe/Te Core-shell Hetero-nanostructures by Vapor-solid Process

  • Song, Gwan-U;Kim, Tae-Hun;Bae, Ji-Hwan;Lee, Jae-Uk;Park, Min-Ho;Yang, Cheol-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.580-580
    • /
    • 2012
  • Heterostructures has unique and important properties, which may be helpful for finding many potential applications in the field of electronic, thermoelectric, and optoelectronic devices. We synthesized CdTe/Te core-shell heterostructures by vapor-solid process at low temperatures using a quartz tube furnace. Two step vapor-solid processes were employed. First, various tellurium structures such as nanowires, nanorods, nanoneedles, microtubes and microrods were synthesized under various deposition conditions. These tellurium nanostructures were then used as substrates in the second step to synthesize the CdTe/Te core-shell heterostructures. Using this method, various sizes, shapes and types of CdTe/Te core-shell structures were fabricated under a range of conditions. These structures were analysed by scanning electron microscopy, high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. The vapor phase process at low temperatures appears to be an efficient method for producing a variety of Cd/Te hetero-nanostructures. In addition, the hetero-nanostructures can be tailored to the needs of specific applications by deliberately controlling the synthetic parameters.

  • PDF

Enhanced UV-Light Emission in ZnO/ZnS Quantum Dot Nanocrystals (산화아연/황화아연 양자점 나노결정에서의 향상된 자외선 방출)

  • Kim, Ki-Eun;Kim, Woong;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.640-644
    • /
    • 2008
  • ZnO/ZnS core/shell nanocrystals (${\sim}5-7\;nm$ in diameter) with a size close to the quantum confinement regime were successfully synthesized using polyol and thermolysis. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses reveal that they exist in a highly crystalline wurtzite structure. The ZnO/ZnS nanocrystals show significantly enhanced UV-light emission (${\sim}384\;nm$) due to effective surface passivation of the ZnO core, whereas the emission of green light (${\sim}550\;nm$) was almost negligible. They also showed slight photoluminescence (PL) red-shift, which is possibly due to further growth of the ZnO core and/or the extension of the electron wave function to the shell. The ZnO/ZnS core/shell nanocrystals demonstrate strong potential for use as low-cost UV-light emitting devices.

Small-Angle Neutron Scattering Study of the Structure of Micelles Formed by a Polystyrene-Poly(ethylene oxide) Diblock Copolymer in Aqueous Solution (수용액 내 폴리스티렌-폴리에틸옥사이드 이중블록공중합체 미셀 구조에 대한 소각중성자산란 연구)

  • Kang, Byoung-Yook;Choi, Mi-Ju;Hwang, Kyu-Hee;Lee, Kwang-Hee;Jin, Byoung-Suk
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.485-489
    • /
    • 2009
  • The temperature dependence of the structure of micelles formed by a deuterated polystyrene-poly(ethylene oxide) diblock copolymer (dPS-PEO) in heavy water were investigated with small-angle neutron scattering (SANS). SANS data were analyzed using the hard-sphere structure factor in combination with the form factor of a core-shell model. The micelle aggregation number and corona radius were obtained from the fits to the SANS data. The micelle aggregation numbers varied with temperature from 229 at $25^{\circ}C$ to 240 at $45^{\circ}C$, with a corresponding increase in the core radius. However, the shell thickness of micelles decreased with increasing temperature from 6.2 to 5.8 nm. These structural changes of micelles might be ascribed to the decrease in the hydration volume per hydrophilic group in the corona because of the increase in hydrophobicity of the PEO block with increasing temperature.

Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer (Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석)

  • Jo, Hyunsik;Cho, Sungwoo;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.

Effect of the Process Parameters on the Fe Nano Powder Formation in the Plasma Arc Discharge Process (플라즈마 아크 방전법에서 Fe 나노 분말 형성에 미치는 공정변수의 영향)

  • 이길근;김성규
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline $\alpha$-Fe in the core and the crystalline $Fe_3O_4$ in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.

Free Vibration Analysis of a Core Support Barrel by Experimental and Analysis Methods (실험 및 해석을 통한 노심지지 원통쉘의 자유진동해석)

  • 김월태;정명조;송선호;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.217-222
    • /
    • 1997
  • Free vibration analysis of a Core Support Barrel shell structure is studied through experimental and finite element analysis methods. The structure is considered to be a thick shell with the ratio of thickness to radius 3/10. Finite element model is established by solid model with brick elements. Modal analyses are performed with respect to the various ratios of thickness to radius with clamped-free and free-free boundary conditions. Experimental test is done to find out how well the results are agreed with those of analysis. The comparison of the results from experiment and analysis shows a good agreement between them in general.

  • PDF

Microstructural and Magnetic Characterization of Fe Nanosized Powder Synthesized by Pulsed Wire Evaporation

  • Kim, Deok Hyeon;Lee, Bo Wha
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.100-103
    • /
    • 2017
  • We studied the microstructure and magnetic properties of Fe nanosized powder synthesized by the pulsed wire evaporation method. The x-ray diffraction spectrum confirmed that this powder had a pure ${\alpha}$-Fe phase. Scanning electron microscope and transmission electron microscope measurements indicated that the prepared powder had uniform spherical shape with core-shell structure. The mean powder size was about 35 nm and the thickness of the surface passivation layer was about 5 nm. Energy dispersive X-ray spectroscopy measurement indicated that the surface passivation layer was iron oxide. Magnetic field dependent magnetization measurement at room temperature showed that the maximum magnetization of the prepared powder was 177.1 emu/g at 1 T.

Characterization of Fe Nanocapsules synthesized by Plasma Arc Discharge Process (플라즈마 아크방전(PAD)법으로 제조된 Fe Nanocapsules의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.510-514
    • /
    • 2004
  • Iron-carbon nanocapsules were synthesized by plasma arc discharge (PAD) process under various atmosphere of methane, argon and hydrogen gas. Characterization and surface properties were investigated by means of HRTEM, XRD, XPS and Mossbauer spectroscopy. Fe nanocapsules synthesized were composed of three phases $({\alpha}-Fe,\;Y-Fe\;and\;Fe_{3}C)$ with core/shell structures. The surface of nanocapsules was covered by the shell of graphite phase in the thickness of $4{\~}5$nm.

Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer

  • Han, Seung-Jin;Shin, Kyo-Min;Suh, Kyung-Do;Ryu, Jee-Hyun
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.399-403
    • /
    • 2008
  • Monodisperse, micron-sized, hybrid particles having a core-shell structure were prepared by coating the surface of poly(methyl methacrylate)(PMMA) microspheres with silica and by copolymerizing acrylamide (AAm) to supply the hydrogen bonding effect by means of the amide groups. Tetraethoxysilane (TEOS) was then slowly dropped onto the medium under certain conditions. Because of the hydrogen bonding between the amide of the PMMA particles and the hydroxyl group of the hydrolyzed silanol, a silica shell was generated on the PMMA core particles. The morphology of the hybrid particles was investigated with transmission (TEM) and scanning (SEM) electron microscopy as a function of the medium conditions and the amount of TEOS. Improved thermal properties were observed by TGA analysis.

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.