• Title/Summary/Keyword: Cord blood stem cells

Search Result 60, Processing Time 0.025 seconds

Hepatocyte Growth Factor is the Key Cytokine in Stimulating Potential Stem Cells in the Cord Blood into Hepatic Lineage Cells

  • Ryu, Kyung-Ha;Cho, Su-Jin;Woo, So-Youn;Seoh, Ju-Young;Jung, Yun-Jae;Han, Ho-Seong
    • IMMUNE NETWORK
    • /
    • v.7 no.3
    • /
    • pp.117-123
    • /
    • 2007
  • Background: This study was designed to investigate the role of the hepatocyte growth factor (HGF) with regards to differentiation of somatic stem cells originating from the human umbilical cord blood (UCB) into hepatic lineage cells in vitro culture system. Methods: Mononuclear cells from UCB were cultured with and without HGF based on the fibroblast growth factor (FGF)-1, FGF-2, and stem cell factor. The cultured cells were confirmed by immunofluorescent staining analysis with albumin (ALB), cytokeratin-19 (CK-19), and proliferating cell nuclear antigen (PCNA) MoAb. ALB and CK-18 mRNA were also evaluated by reverse transcription-polymerase chain reaction. In order to observe changes in proliferating capacity with respect to the cultured period, CFSE with affinity to proliferating cells were tagged and later underwent flow cytometry. Results: In the HGF-treated group, cultured cells had a large oval shaped appearance with adherent, but easily detachable characteristics. In the HGF-non treated group, these cells were spindle-shaped with strong adherent characteristics. Expressions of ALB and CK-19 were evident in HGF-treated group compared to non-expression of those in to HGF-non treated group. Dual immunostaining analysis of the ALB producing cells showed presence of PCNA in their nuclei, and ALB and CK-18 mRNA were detected on the 21st day of cultured cells in the HGF-treated group. Conclusion: Our findings suggest that HGF has a pivotal role in differentiating somatic stem cells of human UCB into hepatic lineage cells in vitro.

Proteomic Analysis of the Hydrophobic Fraction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

  • Jeong, Ju Ah;Lee, Yoon;Lee, Woobok;Jung, Sangwon;Lee, Dong-Seong;Jeong, Namcheol;Lee, Hyun Soo;Bae, Yongsoo;Jeon, Choon-Ju;Kim, Hoeon
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.

Bio-inert Surface of Pluronic-immobilized Flask for Preservation of Hematopoietic Stem Cells

  • Higuchi, Akon;Aoki, Nobuo;Gomei, Yumiko;Matsuoka, Yuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.267-267
    • /
    • 2006
  • Human umbilical cord blood was stored at $4^{\circ}C$ in the Pluronic-immobilized flask as well as commercially available bio-inert flasks, and flow cytometric analysis of surface markers was performed on hematopoietic stem cells after cultivation. The number of cells expressing $CD34^{+}$ in umbilical cord blood on the Pluronic-immobilized flask was extremely higher than those obtained using other flasks. It is concluded that the flexible and hydrophilic segments of Pluronic conjugated on the flask surface are the reason for the effective preservation of hematopoietic stem cells in the Pluronic-immobilized flask.

  • PDF

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

Mesenchymal stem cells for restoration of ovarian function

  • Yoon, Sook Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

Interferon-gamma susceptibility of HL-60 cells, mononuclear cells of umbilical cord blood and bone marrow (HL-60 세포주, 제대혈 및 골수 단핵구 세포의 interferon-gamma에 대한 감수성에 관한 연구)

  • Cheong, Hee Jeong;Hong, Dae Sik;Kim, Sook Ja;Cheong, Jae Hwa;Lee, Joo Young;Lee, Nam Su;Park, Sung Kyu;Won, Jong Ho;Park, Hee Sook;Kim, Sung Il
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.230-235
    • /
    • 2001
  • Background: Finding of the regulation of various gene expression by cytokine including $IFN-{\gamma}$ in hematopoietic stem cell will light up the understanding of pathogenesis of aplastic anemia in various aspects. To study on aplastic anemia, however, we have to circumvent the difficulty of directly obtaining bone marrow stem cells from the patient. Therefore, we tried to find out a cell can replace the bone marrow stem cells for study on cell signaling pathway and regulation of gene expression by $IFN-{\gamma}$. Materials and Methods: HL-60 cells, of 20 ng/mL of $IFN-{\gamma}$. Total RNA was isolated from the cells and RT-PCR of the indoleamine 2,3-dioxygenase (IDO), $IFN-{\gamma}$, TNF-${\alpha}$, $MIP-1{\alpha}$, and $TGF-{\beta}2$ was carried out for the estimation of the gene expression. Results: $IFN-{\gamma}$ induced IDO gene expression of mononuclear cells from umbilical cord blood showed similar pattern as compared to that of bone marrow. Whether $INF-{\gamma}$ was treated or not, $TNF-{\alpha}$ was expressed in both mononuclear cells from umbilical cord blood and bone marrow. However, HL-60 cells showed different expression patterns. HL-60 cells would express neither IDO nor $TNF-{\alpha}$ even under the culture with 20ng/mL of $IFN-{\gamma}$. Conclusion: Our results showed bone marrow can be replaced with mononuclear cells from umbilical cord blood in the study on the relation between aplastic anemia and $IFN-{\gamma}$ including $IFN-{\gamma}$ cell signaling pathway.

  • PDF

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Human umbilical cord blood plasma alleviates age-related olfactory dysfunction by attenuating peripheral TNF-α expression

  • Lee, Byung-Chul;Kang, Insung;Lee, Seung-Eun;Lee, Jin Young;Shin, Nari;Kim, Jae-Jun;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Social requirements are needed for living in an aging society and individual longevity. Among them, improved health and medical cares, appropriate for an aging society are strongly demanded. Human cord blood-derived plasma (hUCP) has recently emerged for its unique anti-aging effects. In this study, we investigated brain rejuvenation, particularly olfactory function, that could be achieved by a systemic administration of young blood and its underlying mechanisms. Older than 24-month-old mice were used as an aged group and administered with intravenous injection of hUCP repetitively, eight times. Anti-aging effect of hUCP on olfactory function was evaluated by buried food finding test. To investigate the mode of action of hUCP, brain, serum and spleen of mice were collected for further ex vivo analyses. Systemic injection of hUCP improved aging-associated olfactory deficits, reducing time for finding food. In the brain, although an infiltration of activated microglia and its expression of cathepsin S remarkably decreased, significant changes of proinflammatory factors were not detected. Conversely, peripheral immune balance distinctly switched from predominance of Type 1 helper T (Th1) cells to alternative regulatory T cells (Tregs). These findings indicate that systemic administration of hUCP attenuates age-related neuroinflammation and subsequent olfactory dysfunction by modulating peripheral immune balance toward Treg cells, suggesting another therapeutic function and mechanism of hUCP administration.