• Title/Summary/Keyword: Copy-number abnormalities

Search Result 10, Processing Time 0.022 seconds

Relationship Between Mitochondrial DNA Copy Number, Metabolic Abnormalities and Hepatic Steatosis (지방간 및 대사 인자들과 말초혈액 백혈구의 사립체 DNA copy 수와의 연관성)

  • Kwon, Kil-Young;Jun, Dae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2093-2098
    • /
    • 2010
  • Insulin resistance plays a central role in fatty liver, a part of the metabolic syndrome. This study examined the relationship between fatty liver, metabolic abnormalities and mitochondrial DNA [mtDNA] copy number in peripheral blood that is correlated with diabetes or metabolic markers. Fatty liver was assessed by questionnaire on alcohol consumption and abdominal ultrasonography. MtDNA copy number in peripheral leukocytes was measured by a real-time quantitative polymerase chain reaction [PCR]. Among 445 subjects, 148 subjects had hepatic steatosis and 297 were controls. mtDNA copy number was significantly lower in fatty liver group in comparison with that of normal finding group. This result is similar in both groups, alcoholic or non-alcoholic fatty liver group. MtDNA copy number was inversely correlated with alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyltransferase [$\gamma$-GTP], body mass index [BMI], waist circumference, diastolic blood pressure, and free fatty acid. MtDNA copy number in peripheral leukocytes was associated with fatty liver and insulin resistance related factors.

Clinical Application of Chromosomal Microarray for Hematologic Malignancies

  • Chang Ahn Seol
    • Journal of Interdisciplinary Genomics
    • /
    • v.6 no.2
    • /
    • pp.33-36
    • /
    • 2024
  • Chromosomal microarray (CMA) can detect genome-wide small copy number abnormalities (CNAs) and copy-neutral loss of heterozygosity (CN-LOH) better than conventional karyotyping and fluorescence in situ hybridization (FISH) for hematologic malignancies. Apart from the limitations in detecting balanced chromosomal rearrangements and low-level malignant clones, CMA has clinical utility in detecting significant recurrent and novel variants with diagnostic, prognostic, and therapeutic evidence. It can successfully complement conventional cytogenetic tests for several hematological malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM). An increase in CMA testing for hematologic malignancies is expected to identify novel markers of clinical significance.

Genetic Abnormalities in Oral Leukoplakia and Oral Cancer Progression

  • Kil, Tae Jun;Kim, Hyun Sil;Kim, Hyung Jun;Nam, Woong;Cha, In-Ho
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.3001-3006
    • /
    • 2016
  • Background: The cancer progression of oral leukoplakia is an important watchpoint in the follow-up observation of the patients. However, potential malignancies of oral leukoplakia cannot be estimated by histopathologic assessment alone. We evaluated genetic abnormalities at the level of copy number variation (CNV) to investigate the risk for developing cancer in oral leukoplakias. Materials and Methods: The current study used 27 oral leukoplakias with histological evidence of dysplasia. The first group (progressing dysplasia) consisted of 7 oral lesions from patients with later progression to cancer at the same site. The other group (non-progressing dysplasia) consisted of 20 lesions from patients with no occurrence of oral cancer and longitudinal follow up (>7 years). We extracted DNA from Formalin-Fixed Paraffin-Embedded (FFPE) samples and examined chromosomal loci and frequencies of CNVs using Taqman copy number assays. Results: CNV frequently occurred at 3p, 9p, and 13q loci in progressing dysplasia. Our results also indicate that CNV at multiple loci-in contrast to single locus occurrences-is characteristic of progressing dysplasia. Conclusions: This study suggests that genetic abnormalities of the true precancer demonstrate the progression risk which cannot be delineated by current histopathologic diagnosis.

Clinical Application of Chromosomal Microarray for Germline Disorders

  • Chang Ahn Seol
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.24-28
    • /
    • 2023
  • Chromosomal microarray (CMA) is primarily recommended for detecting clinically significant copy number variants (CNVs) in the genetic diagnosis of developmental delay, intellectual disability, autism, and congenital malformations. Prenatal CMA is recommended when a fetus has major congenital malformations. The main principles of CMA can be divided into array comparative genomic hybridization and single-nucleotide polymorphism arrays. In the current CMA platforms, these two principles are combined, and detection of genetic abnormalities including CNVs and absence of heterozygosity is facilitated. In this review, I described practical assessment of CMA testing regarding to laboratory management of CMA, interpretation of CNVs, and special considerations for comprehensive genetic counseling.

A new mosaic der(18)t(1;18)(q32.1;q21.3) with developmental delay and facial dysmorphism

  • Choi, Young-Jin;Shin, Eunsim;Jo, Tae Sik;Moon, Jin-Hwa;Lee, Se-Min;Kim, Joo-Hwa;Oh, Jae-Won;Kim, Chang-Ryul;Seol, In Joon
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • We report the case of a 22-month-old boy with a new mosaic partial unbalanced translocation of 1q and 18q. The patient was referred to our Pediatric Department for developmental delay. He showed mild facial dysmorphism, physical growth retardation, a hearing disability, and had a history of patent ductus arteriosus. White matter abnormality on brain magnetic resonance images was also noted. His initial routine chromosomal analysis revealed a normal 46,XY karyotype. In a microarray-based comparative genomic hybridization (aCGH) analysis, subtle copy number changes in 1q32.1-q44 (copy gain) and 18q21.33-18q23 (copy loss) suggested an unbalanced translocation of t(1;18). Repeated chromosomal analysis revealed a low-level mosaic translocation karyotype of 46,XY,der(18)t(1;18) (q32.1;q21.3)[12]/46,XY[152]. Because his parents had normal karyotypes, his translocation was considered to be de novo. The abnormalities observed in aCGH were confirmed by metaphase fluorescent in situ hybridization. We report this patient as a new karyotype presenting developmental delay, facial dysmorphism, cerebral dysmyelination, and other abnormalities.

Genomic DNA Chip: Genome-wide profiling in Cancer

  • 이종호
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.61-86
    • /
    • 2001
  • All cancers are caused by abnormalities in DNA sequence. Throughout life, the DNA in human cells is exposed to mutagens and suffers mistakes in replication, resulting in progressive, subtle changes in the DNA sequence in each cell. Since the development of conventional and molecular cytogenetic methods to the analysis of chromosomal aberrations in cancers, more than 1,800 recurring chromosomal breakpoints have been identified. These breakpoints and regions of nonrandom copy number changes typically point to the location of genes involved in cancer initiation and progression. With the introduction of molecular cytogenetic methodologies based on fluorescence in situ hybridization (FISH), namely, comparative genomic hybridization (CGH) and multicolor FISH (m-FISH) in carcinomas become susceptible to analysis. Conventional CGH has been widely applied for the detection of genomic imbalances in tumor cells, and used normal metaphase chromosomes as targets for the mapping of copy number changes. However, this limits the mapping of such imbalances to the resolution limit of metaphase chromosomes (usually 10 to 20 Mb). Efforts to increase this resolution have led to the "new"concept of genomic DNA chip (1 to 2 Mb), whereby the chromosomal target is replaced with cloned DNA immobilized on such as glass slides. The resulting resolution then depends on the size of the immobilized DNA fragments. We have completed the first draft of its Korean Genome Project. The project proceeded by end sequencing inserts from a library of 96,768 bacterial artificial chromosomes (BACs) containing genomic DNA fragments from Korean ethnicity. The sequenced BAC ends were then compared to the Human Genome Project′s publicly available sequence database and aligned according to known cancer gene sequences. These BAC clones were biotinylated by nick translation, hybridized to cytogenetic preparations of metaphase cells, and detected with fluorescein-conjugated avidin. Only locations of unique or low-copy Portions of the clone are identified, because high-copy interspersed repetitive sequences in the probe were suppressed by the addition of unlabelled Cotl DNA. Banding patterns were produced using DAPI. By this means, every BAC fragment has been matched to its appropriate chromosomal location. We have placed 86 (156 BAC clones) cytogenetically defined landmarks to help with the characterization of known cancer genes. Microarray techniques would be applied in CGH by replacement of metaphase chromosome to arrayed BAC confirming in oncogene and tumor suppressor gene: and an array BAC clones from the collection is used to perform a genome-wide scan for segmental aneuploidy by array-CGH. Therefore, the genomic DNA chip (arrayed BAC) will be undoubtedly provide accurate diagnosis of deletions, duplication, insertions and rearrangements of genomic material related to various human phenotypes, including neoplasias. And our tumor markers based on genetic abnormalities of cancer would be identified and contribute to the screening of the stage of cancers and/or hereditary diseases

  • PDF

Clinical Applications of Chromosomal Microarray Analysis (염색체 Microarray 검사의 임상적 적용)

  • Seo, Eul-Ju
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.111-118
    • /
    • 2010
  • Chromosomal microarray analysis (CMA) enables the genome-wide detection of submicroscopic chromosomal imbalances with greater precision and accuracy. In most other countries, CMA is now a commonly used clinical diagnostic test, replacing conventional cytogenetics or targeted detection such as FISH or PCR-based methods. Recently, some consensus statements have proposed utilization of CMA as a first-line test in patients with multiple congenital anomalies not specific to a well-delineated genetic syndrome, developmental delay/intellectual disability, or autism spectrum disorders. CMA can be used as an adjunct to conventional cytogenetics to identify chromosomal abnormalities observed in G-banding analysis in constitutional or acquired cases, leading to a more accurate and comprehensive assessment of chromosomal aberrations. Although CMA has distinct advantages, there are several limitations, including its inability to detect balanced chromosomal rearrangements and low-level mosaicism, its interpretation of copy number variants of uncertain clinical significance, and significantly higher costs. For these reasons, CMA is not currently a replacement for conventional cytogenetics in prenatal diagnosis. In clinical applications of CMA, knowledge and experience based on genetics and cytogenetics are required for data analysis and interpretation, and appropriate follow-up with genetic counseling is recommended.

Application of array comparative genomic hybridization in Korean children under 6 years old with global developmental delay

  • Lee, Kyung Yeon;Shin, Eunsim
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.9
    • /
    • pp.282-289
    • /
    • 2017
  • Purpose: Recent advancements in molecular techniques have greatly contributed to the discovery of genetic causes of unexplained developmental delay. Here, we describe the results of array comparative genomic hybridization (CGH) and the clinical features of 27 patients with global developmental delay. Methods: We included 27 children who fulfilled the following criteria: Korean children under 6 years with global developmental delay; children who had at least one or more physical or neurological problem other than global developmental delay; and patients in whom both array CGH and G-banded karyotyping tests were performed. Results: Fifteen male and 12 female patients with a mean age of $29.3{\pm}17.6months$ were included. The most common physical and neurological abnormalities were facial dysmorphism (n=16), epilepsy (n=7), and hypotonia (n=7). Pathogenic copy number variation results were observed in 4 patients (14.8%): 18.73 Mb dup(2)(p24.2p25.3) and 1.62 Mb del(20p13) (patient 1); 22.31 Mb dup(2) (p22.3p25.1) and 4.01 Mb dup(2)(p21p22.1) (patient 2); 12.08 Mb del(4)(q22.1q24) (patient 3); and 1.19 Mb del(1)(q21.1) (patient 4). One patient (3.7%) displayed a variant of uncertain significance. Four patients (14.8%) displayed discordance between G-banded karyotyping and array CGH results. Among patients with normal array CGH results, 4 (16%) revealed brain anomalies such as schizencephaly and hydranencephaly. One patient was diagnosed with Rett syndrome and one with $M{\ddot{o}}bius$ syndrome. Conclusion: As chromosomal microarray can elucidate the cause of previously unexplained developmental delay, it should be considered as a first-tier cytogenetic diagnostic test for children with unexplained developmental delay.

Genomic Alteration of Bisphenol A Treatment in the Testis of Mice

  • Kim, Seung-Jun;Park, Hye-Won;Youn, Jong-Pil;Ha, Jung-Mi;An, Yu-Ri;Lee, Chang-Hyeon;Oh, Moon-Ju;Oh, Jung-Hwa;Yoon, Seok-Joo;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • Bisphenol A (BPA) is commonly used in the production of pharmaceutical, industrial, and housing epoxy, as well as polycarbonate plastics. Owing to its extensive use, BPA can contaminate the environment either directly or through derivatives of these products. BPA has been classified as an endocrine disruptor chemicals (EDCs), and the primary toxicity of these EDCs in males involves the induction of reproductive system abnormality. First, in order to evaluate the direct effects on the Y chromosome associated with reproduction, we evaluated Y chromosome abnormalities using a Y chromosome microdeletion detection kit. However, we detected no Yq abnormality as the result of BPA exposure. Secondly, we performed high-density oligonucleotide array-based comparative genome hybridization (CGH) to assess genomic alteration as a component of our toxicity assessment. The results of our data analysis revealed some changes in copy number. Seven observed features were gains or losses in chromosomal DNA (P-value<1.0e-5, average log2 ratio>0.2). Interestingly, 21 probes of chr7:7312289-10272836 (qA1-qA2 in cytoband) were a commonly observed amplification (P-value 3.69e-10). Another region, chr14:4551029-10397399, was also commonly amplified (P-value 2.93e-12, average of log2 ratios in segment>0.3786). These regions include many genes associated with pheromone response, transcription, and signal transduction using ArrayToKegg software. These results help us to understand the molecular mechanisms underlying the reproductive effects induced by BPA.

Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm

  • Yunsun Song;Jong-Keuk Lee;Jin-Ok Lee;Boseong Kwon;Eul-Ju Seo;Dae Chul Suh
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • Objective: Familial intracranial aneurysms (FIAs) are found in approximately 6%-20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods: Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results: Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion: Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.