• Title/Summary/Keyword: Coprocessor

Search Result 56, Processing Time 0.024 seconds

Hardware Design of AES Cryptography Module Operating as Coprocessor of Core-A Microprocessor (Core-A 마이크로프로세서의 코프로세서로 동작하는 AES 암호모듈의 하드웨어 설계)

  • Ha, Chang-Soo;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2569-2578
    • /
    • 2009
  • Core-A microprocessor is the all-Korean product designed as 32-bit embedded RISC microprocessor developed by KAIST and supported by the Industrial Property Office. This paper analyze Core-A microprocessor architecture and proposes efficient method to interface Core-A microprocessor with coprocessor. To verify proposed interfacing method, the AES cryptography processor that has 128-bit key and block size is used as a coprocessor. Coprocessor and AES are written in Verilog-HDL and verified using Modelsim simulator. It except AES module consists of about 3,743 gates and its maximum operating frequency is about 90Mhz under 0.35um CMOS technology. The proposed coprocessor interface architecture is efficiency to send data or to receive data from Core-A to coprocessor.

Study on Implementation of a neural Coprocessor for Printed Hangul-Character Recognition (한글 인쇄체 문자인식 전용 신경망 Coprocessor의 구현에 관한 연구)

  • Kim, Young-Chul;Lee, Tae-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.119-127
    • /
    • 1998
  • In this paper, the design of a VLSI-based multilayer neural network is presented, which can be used as a dedicated hardware for character-type segmentation and character-element recogniti on consuming large processing time in conventional software-based Hangul printed-character recognition systems. Also the architecture and its design of a neural coprocessor interfacing the neural network with a host computcr and controlling thc neural network are presented. The architecture, behavior, and performance of the proposed neural coprocessor are justified using VHDL modeling and simulation. Experimental results show the successful rates of character-type segmentation and character-element recognition is competitive to those of software-based Hangul printed-character recognition systems with retaining high-speed.

  • PDF

Design of Cryptographic Coprocessor for SEED Algorithm (SEED 알고리즘용 암호 보조 프로세서의 설계)

  • 최병윤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1609-1617
    • /
    • 2000
  • In this paper a design of cryptographic coprocessor which implements SEED algorithm is described. To satisfy trade-off between area and speed, the coprocessor has structure in which 1 round operation is divided into three subrounds and then subround is executed for one clock. To improve clock frequency online precomputation scheme for round key is used. To apply the coprocessor to various applications, four operating modes such as ECB, CBC, CFB, and OFB are supported. Also to eliminate performance degradation due to data input and data output time between host computer and coprocesor, background input/output method is used. The cryptographic coprocessor is designed using $0.25{\mu}{\textrm}{m}$ CMOS technology and consists of about 29,300 gates. Its peak performance is about 237 Mbps encryption or decryption rate under 100 Mhz clock frequncy and ECB mode.

  • PDF

VLSI Design of AES Cryptographic Processor (AES 암호 프로세서의 VLSI 설계)

  • 정진욱;최병윤;서정욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper a design of cryptographic coprocessor which implements AES Rijndael algorithm is described. To achieve average throughput of 1 round per 5 clocks, subround pipelined scheme is applied. To apply the coprocessor to various applications, three key sizes such as 128, 192, 256 bits are supported. The cryptographic coprocessor is designed using 0.25${\mu}{\textrm}{m}$ CMOS technology and consists of about 36, 000 gates. Its peak performance is about 512 Mbps encryption or decryption rate under 200 Mhz clock frequency and 128-bit key ECB mode(AES-128ECB).

  • PDF

Design of Elliptic Curve Cryptographic Coprocessor over binary fields for the IC card (IC 카드를 위한 polynomial 기반의 타원곡선 암호시스템 연산기 설계)

  • 최용제;김호원;김무섭;박영수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.305-308
    • /
    • 2001
  • This paper describes the design of elliptic curve cryptographic (ECC) coprocessor over binary fields for the If card. This coprocessor is implemented by the shift-and-add algorithm for the field multiplication algorithm. And the modified almost inverse algorithm(MAIA) is selected for the inverse multiplication algorithm. These two algorithms is merged to minimize the hardware size. Scalar multiplication is performed by the binary Non Adjacent Format(NAF) method. The ECC we have implemented is defined over the field GF(2$^{163}$), which is a SEC-2 recommendation[7]..

  • PDF

Development of a Floating Point Co-Processor for ARM Processor (ARM 프로세서용 부동 소수점 보조 프로세서 개발)

  • 김태민;신명철;박인철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.232-235
    • /
    • 1999
  • In this paper, we present a coprocessor that can operate with ARM microprocessors. The coprocessor supports IEEE 754 standard single- and double-precision binary floating point arithmetic operations. The design objective is to achieve minimum-area, low-power and acceleration of processing power of ARM microprocessors. The instruction set is compatible with ARM7500FE. The coprocessor is written in verilog HDL and synthesized by the SYNOPSYS Design Compiler. The gate count is 38,115 and critical path delay is 9.52ns.

  • PDF

An Implementation of ECC Coprocessor over ${F_2}^{162}$ Based on Optimal Normal Basis (162 비트 Optimal Normal Basis상의 ECC Coprocessor의 구현)

  • 배상태;백동근;김홍국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.370-372
    • /
    • 2004
  • 본 논문에서는 162bits의 Key Size를 가지고서도 RSA 1024bits의 암호학적 강도를 지니는 스마트카드용으로 적합한 ECC Coprocessor의 구현하고자 한다. ECC의 하드웨어 구현시의 적합성을 위해 162bit Optimal Normal Basis를 선택하였으며, Multiplication은 23 클록 사이클에 수행이 되도록 구현하였으며. Inversion은 Multiplication을 11번 사용하는 알고리즘을 선택하였다. 이때 한번의 점간의 덧셈 연산을 마치는데 331(335) 클록 사이클이 소요되며 클록의 최소주기는 3ns 이다. 또한 Area는 37,111를 기록했다.

  • PDF

Vector Control of Induction Motors Using Motion Coprocessor (Motion Coprocessor를 이용한 유도전동기의 벡터제어)

  • Kim, Sung-Hoon;An, Ho-Kyun;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2748-2750
    • /
    • 1999
  • This Paper describes the design of an induction motor control using the TMS320C32 Digital Signal Processor and the ADMC201 motion coprocessor. Presented hardware architecture can be used for several industry applications with wide range of speed control, e.g. elevator and cranes application, servo motor, electrical vehicles. The main purpose of the paper is demonstration of the implementation and maximum utilization of the ADMC201 motion coprocessor in digital vector control system for AC drives.

  • PDF

Design of Reconfigurable Coprocessor for Multimedia Mobile Terminal (멀티미디어 무선 단말기를 위한 재구성 가능한 코프로세서의 설계)

  • Kim, Nam-Sub;Lee, Sang-Hun;Kum, Min-Ha;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.63-72
    • /
    • 2007
  • In this paper, we propose a novel reconfigurable coprocessor for multimedia mobile terminals. Because most of multimedia operations require fast operations of large amount of data in the limited clock frequency, it is necessary to enhance the performance of the embedded processor that is widely used in current multimedia mobile terminals. Therefore, we proposed and have designed the coprocessor which had the ability of fast operations of multimedia data. The proposed coprocessor was not only reconfigurable, but also flexible and expandable. The proposed coprocessor has been designed by using VHDL and compared with previous reconfigurable coprocessors and a commercial embedded processor in architecture and speed. As a result of the architectural comparison, the proposed coprocessor had better structure in terms of hardware size and flexibility. Also, the simulation results of DCT application showed that the proposed coprocessor was 26 times faster than a commercial ARM processor and 11 times faster than the ARM processor with fast DCT core.

Hardware Design of VLIW coprocessor for Computer Vision Application (컴퓨터 비전 응용을 위한 VLIW 보조프로세서의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2189-2196
    • /
    • 2014
  • In this paper, a VLIW(Very Long Instruction Word) vision coprocessor which can efficiently accelerate computer vision algorithm for automotive is designed. The VLIW coprocessor executes four instructions per clock cycle via 8-stage pipelined structure and has 36 integer and floating-point instructions to accelerate computer vision algorithm for pedestrian detection. The processor has about 300-MHz operating frequency and about 210,900 gates under 45nm CMOS technology and its estimated performance is 1.2 GOPS(Giga Operations Per Second). The vision system composed of vision primitive engine and eight VLIW coprocessors can execute pedestrian detection at 25~29 frames per second(FPS). Because the VLIW coprocessor has high detection rate and loosely coupled interface with host processor, it can be efficiently applicable to a wide range of vision applications.