• 제목/요약/키워드: Copper-Plating

검색결과 265건 처리시간 0.026초

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • 김동섭;이은주;김정;이수홍
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

동도금 EP방열판에 의한 소형LED조명등 방열 (Heat Radiation of LED Light using eu Plating Engineering Plastic Heat Sink)

  • 조영태
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, the electronic parts are to be thinner plate, smaller size, light weight material and CPU, HDD and DRAM in all the parts have been produced on the basis of the high speed and greater capacity. Also, conventional goods have replaced a LED (Light-Emitting Diode) in lighting products so; such industry devices need to have cooling. To maximize all the performance on the heat-radiated products, the area of heat-radiated parts is required to be cooled for keeping the life time extension and performance of product up. Existing cooling systems are using radiant heat plate of aluminum, brass by extrusion molding, heat pipe or hydro-cooling system for cooling. There is a limitation for bringing the light weight of product, cost reduction, molding of the cooling system. So it is proposed that an alternative way was made for bringing to the cooling system. EP (Engineering Plastic) of low-cost ABS (Acrylonitrile butadiene styrene Resin) and PC (Polycarbonate) was coated with brass and the coating made the radiated heat go up. The performance of radiant heat plate is the similar to the existing part. We have studied experimentally on the radiated heat plate for the light-weight, molding improvement and low-cost. From now on, we are going to develop the way to replace the exiting plate with exterior surface of product as a cooling system.

Fabrication of EDM Electrodes by Localized Electrochemical Deposition

  • Habib, Mohammad Ahsan;Gan, Sze Wei;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.75-80
    • /
    • 2008
  • The fabrication of complex three-dimensional electrodes for micro electrical discharge machining (micro-EDM) is an important issue in the field of micromachining Localized electrochemical deposition (LECD) is a simple and inexpensive technique for fabricating micro-EDM electrodes. This study presents a new process for manufacturing electrodes with complex cross-sections using masks of different shapes, In this process, a non-conductive mask is placed between an anode and cathode that are immersed in a plating solution of acidified copper sulfate. The LECD is achieved by applying a pulsed voltage between the anode and cathode, which are separated by a small distance. In this setup, the cathode is placed above the anode and the mask, so that the deposited electrode can be used directly for EDM without changing the tool orientation. We found that the microstructure of the deposited electrode is influenced by the concentration of the plating solution and organic additives. Moreover, the values of the voltage, frequency, and duty cycle of the pulsed input have significant effects on the microstructure of the fabricated electrode. Finally, the optimum values of the voltage, frequency, and duty cycle were determined for the most effective fabrication of complex-shaped electrodes.

펄스법을 이용한 리드프레임의 니켈도금에 관한 연구 (Study on Nickel Plating of Leadframe using Pulse Technique)

  • 정원섭;민병승;임종주;정우창
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.242-250
    • /
    • 2003
  • Electrodeposition of Ni was carried out on copper substrate from Ni Sulfamate bath by DC and high frequency pulse current. During the electroplating, bath temperature was steady $60^{\circ}C$ , agitation was applied. Morphology and surface roughness of electrodeposits was investigated with the AFM. Crystalline structure of electrodeposits was investigated with XRD. Also, surface electric resistivity was investigated with 4-point probe. The result of crystalline structure by X-ray diffractometer, in the case of DC, <200> direction was dominant growing direction. But in the case of PC, the ratio of <200> direction vs. other direction decreased. As the pulse frequency increased, the enhanced properties of deposits were shown. With increasing frequency, the degree of surface properties increased DC more than that of PC, eg surface morphology, roughness and the degree of compactness of grains. With increasing duty cycle, the surface properties such as the degree of the morphology, roughness and electroconductivity was deteriorated.

PAS법을 이용한 Ni기 비정질 분말의 소결 (Sintering of Ni-Based Amorphous Alloy Powders by Plasma Activated Sintering Process)

  • 구자민;신기삼;김윤배;배종수;허성강
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.765-772
    • /
    • 2005
  • PAS(Plasma Activated Sintering) process was tried to apply for the fabrication of BMG(Bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5}\;and\;Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ from the as-atomized amorphous powder. Compressive strength for the BMG(bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5$ were lower than those of BMG rods produced by warm extrusion ,or copper mold casting method. Microstructural examination by optical microcope, SEM ana EDS showed that oxidation had occurred during PASintering. In order to prevent the powder from the oxidation during PASintering, Ni coating for $Ni_{57}Zr_{20}Ti_{18}Si_5$ amorphous powder by electroless-plating method was performed. Microstructural examination for Ni coated layers after PASintering indicated that the Ni coating had been so effective to prevent powder from oxidation during PASintering. Sintering behaviors of $Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ represent the same as those of $Ni_{57}Zr_{20}Ti_{18}Si_5$.

PET 필름상 형성한 전자파차폐용 박막과 그 특성 (Formation of Electromagnetic Wave Shielding Thin Film on PET Film Substrate and Their Properties)

  • 임경민;이훈성;배일용;문경만;최철수;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.205-206
    • /
    • 2011
  • Cu thin films for electromagnetic wave shielding were prepared on PET film and Ni-coated PET film by using Dry and Wet coating method, such as evaporation method, DC sputtering method and copper sulfate($CuSO_4$). After that, Zn thin film and Ni thin film were prepared onto the Cu thin films by using evaporation dry process and Ni electro plating wet process as a finishing treatment, respectively. The result of conductivity test and corrosion resistance test revealed Cu thin films which were formed with bigger grain size and high Cu composition rate have superior properties. Zn thin film by dry evaporation process and Ni thin film by wet electro plating process on Cu thin films were largely contributed to corrosion resistance. However, Ni thin film by wet process made conductivity of all specimen worse, the other hand, Zn thin film by dry process made it better to improve condictivity of specimens just prepared by dry process.

  • PDF

Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항 (Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals)

  • 김진동;배용환;윤해룡;이인환;김호찬
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성 (Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber)

  • 김민경;한준현
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

Ti-Al-Si-Cu-N 후막의 Cu 조성에 따른 기계적 특성과 미세구조 변화에 관한 연구 (Influence of Cu Composition on the Mechanical Properties and Microstructure of Ti-Al-Si-Cu-N thick films)

  • 이연학;허성보;박인욱;김대일
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.335-340
    • /
    • 2023
  • Quinary component of 3㎛ thick Ti-Al-Si-Cu-N films were deposited onto WC-Co and Si wafer substrates by using an arc ion plating(AIP) system. In this study, the influence of copper(Cu) contents on the mechanical properties and microstructure of the films were investigated. The hardness of the films with 3.1 at.% Cu addition exhibited the hardness value of above 42 GPa due to the microstructural change as well as the solid-solution hardening. The instrumental analyses revealed that the deposited film with Cu content of 3.1 at.% was a nano-composites with nano-sized crystallites (5-7 nm in dia.) and a thin layer of amorphous Si3N4 phase.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • 박재형;한동석;문대용;윤돈규;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF