• Title/Summary/Keyword: Copper surface

Search Result 1,362, Processing Time 0.038 seconds

Effect of Epoxy Dielectric Cooling on existing metal Porticoes in GIS (GIS내 금속이물 존재시 에폭시 절연코팅의 효과)

  • 곽희로;구교선;김영찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • In this paper, partial discharges(PDs), lift off and breakdown voltage were measured when metal particles existed in a model GIS coated with epoxy resin on its bottom electrode, and the measured results were analyzed after comparing with the model DIS not coated. In order to presume the various fault case in GIS, we measured the experimental values with changing some experimental factors, such as the mixture ratio of SF$\_$6//N$_2$, the pressure of the gases, the kinds and diameter of the metal particles, and the coating thickness of the epoxy resin. As a result, the PDIV increased with the thickness of the epoxy resin, while the magnitude of PDs decreased at the same condition. The lift off voltages of steel alloy particles were higher than that of copper particles, and increased wit diameter of particles. Futhermore, the lift off voltages in the case of the electrode coated with epoxy resin were higher than that in the case of the uncoated one. In addition, the thicker the thickness of the epoxy resin was, the higher the breakdown voltage were. Thus, it was confirmed that the GIS coated with epoxy resin on its inner surface could be improved in insulation performance.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

The Effect of the Fill Charge Ratio on the Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon (충전율의 변화가 밀폐형 2-상 열사이폰의 열전달 특성에 미치는 영향에 관한 연구)

  • Park, Yong-Joo;Hong, Sung-Eun;Kim, Chul-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1646-1654
    • /
    • 2002
  • A two-phase closed thermosyphon was one of the most effective devices in the removing heat because of its simple structure, thermal diode characteristics, wide operating temperature range and so on. In this study, a two-phase closed thermosyphon(working fluid PFC(C6F14), container copper(inner grooved surface)) was fabricated with a reservoir which can change the fill charge ratio. The experiments were performed in the range of 50~600W heat flow rate and 10~70% fill charge ratio. The results were compared with some correlations that were presented by Rohsenow and Immura et al. in the evaporator, by Nusselt, Gross and Uehara et al. in the condenser and by Cohen and Bayley, Wallis, Kutateladze and Faghri et al. in heat transfer limitation etc.. The heat transfer coefficient at the evaporator increased with the input power. However the effect of the fill charge ratio was nearly negligible. At the condenser, it showed an opposite trend to the evaporator and with increase of the fill charge ratio, showed some enhancement of heat transfer. The heat transport limitation was occurred by the dry-out limitation for small fill charge ratio(10%) and presented about 100W. For the case of large fill charge ratio(Ψ$\geq$40%), it was occurred by the flooding limitation at about 500W.

Preparation of Pure Silver Powders by using Mechanochemical Process (기계화학공정(機械化學工程)에 의한 은(銀)염화물로부터 고순도 은(銀)분말 제조(製造))

  • Lee, Jaer-Yeong;Tung Le, M.;Ahn, Jong-Gwan;Kim, Jong-Oh;Chung, Hun S.;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.33-37
    • /
    • 2006
  • An equal-molar mixture of silver chloride (AgCl) and copper (Cu) was ground in atmosphere conditions using a planetary ball mill to investigate mechanochemical (MC) reaction for preparation of silver powders. The reaction causes the mixture of AgCl and Cu to change the composition of the mixture, such as silver (Ag) and cuprous chloride (CuCl). Through the leaching with ammonium hydroxide solution (1 mol), CuCl can be separated from MC product, so that pure Ag powders can be obtained as the final product. Moreover, polyvinylpyrrolidone (PVP) was used as the additive not only to improve dispersion of Ag pow- der during MC process, but also to control surface oxidation of Ag powders, prepared as the final product.

Catechins Content and Color Values of Silk Fabrics Dyed with Korean Green Tea Extracts (녹차 염색 견포의 카테킨 함량 및 색상변화)

  • Son, Ji-Hyon;Lee, Myung-Sun;Chun, Tae-Il
    • Textile Coloration and Finishing
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Despite several recent attempts to measure the concentration of individual catechins by HPLC, it has not been so easy to separate catechins accurately. The aim of the present work is to provide a proper condition for separating each component of catechins by HPLC analysis, and also to evaluate the experimental variables including color differences, and metal ion contents after dyeing and mordanting. Four kinds of Catechins, (-)-epicatechin(EC), (-)-epicatechin gallate(ECG), (-)-epigallocatechin(EgC), (-)-epigallocatechin gllate(EgCG) were isolated from the residues after dyeing. Catechins in Korean green tea leaves are richer when e tea leaves are younger. Higher concentration of catechins owes it to e way it is processed. The contents of catechins adsorbed in silk fabrics after dyeing were in order of EGCG>ECG>EGC>EC. We have found $68\%$ uptake of EGCG, and 116.8mg of EGCG in the silk fabrics after it was dyed with $1\%$ Korean green tea extracts. The absorbance intensity and K/S values of dyed silk fabrics were increased with dyeing temperature and time. Only the surface color of the silk fabric dyed with green tea extracts was yellowish red, but it changed from yellowish red to red with an increase in the mordant concentration. Post-mordanted silk fabrics with ferrous sulfate changed from yellowish red to red and purple color shade. In a practical evaluation, there is no significant change in color after twenty times of the continuous dry cleaning process. However, post-mordanted fabrics with ferrous sulfate faded the brightness of color after dry cleaning. Dyeing silk fabrics with a Korean tea extract reduced the metal ion contents in the silk fabrics when compared to the untreated silk fabrics. Metal contents in silk fabrics dyed and post-mordanted with $1\%$ each metal solution were 0.194 ppm for Aluminum, 1.601ppm for Copper, and 0.334 ppm for Iron. After the post-mordanting process, the heavy metal ion absorption increased, which was mainly attributed to the catechins and polyphenols in dyed silk fabrics.

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF

Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent (과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구)

  • Park, Jin-Young;Bang, Sun-Bae;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • If an overcurrent exceeding the rated value is applied to an electric wire, the temperature of the electric wire increases, and the electric wire covering deteriorates to cause a short circuit. The upper limit temperature of the wire varies according to the magnitude of the overcurrent. When a short circuit occurs at each upper temperature limit, a cooling speed difference occurs during the solidification process due to the temperature difference between the short circuit temperature and the wire surface temperature. At this time, the pattern characteristics of the dendritic structure formed on the molten cross section are different. In this study, the upper temperature limit, which varied according to the overcurrent magnitude, was measured. At the time a short circuit occurred, the second branch spacing (dendrite Arm Spacing : DAS) of the dendrite was analyzed and the numerical value was quantified. The experimental results showed that the upper temperature limit increases with the magnitude of the overcurrent, and that the second branch spacing increases with increasing wire temperature.

Improvement of semiconductor contact hole filling of Copper by ionized cluster beam deposition technique (이온화클러스터빔 증착법에 의한 구리 박막의 반도체 접촉구 메움 향상에 관한 연구)

  • Baek, Min;Son, Ki-Wang;Kim, Do-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.118-126
    • /
    • 1998
  • A study to improve filling of semiconductor contact holes by enhancement of the directionality of the source beams has been undertaken. The collimation of source beams was improved by the ionized cluster beam deposition technique with modification of the cell geometry. The collimation tested with neutral beam was excellent. But, the Cu flims were grown in a columnar mode due to the lack of surface mobilit of the impinged clusters. A shadow effect also caused cleavage and consequent discontinuity at the steos as films grow. By applying acceleration voltage, the columnar growth in a contact hole of 0.5 $\mu$m diameter and 1 $\mu$m height disappeared and considerable coverage at the side wall of the contacts as well as perfect bottom coverage were observed. These are all due to the assistants of the accelerated ionized clusters with high kinetic energy. Thus we demonstrated that the ICB deposition technique can be used to completely fill sub-half-micron contact holes with high aspect ratio.

  • PDF

Fabrication and Performance Evaluation of Temperature Sensor Matrix Using a Flexible Printed Circuit Board for the Visualization of Temperature Field (온도장 가시화를 위한 연성회로기판을 이용한 온도센서 어레이 제작 및 성능평가)

  • Ahn, Cheol-Hee;Kim, Hyung-Hoon;Cha, Je-Myung;Kwon, Bong-Hyun;Ha, Man-Yeong;Park, Sang-Hu;Jeong, Ji-Hwan;Kim, Kui-Soon;Cho, Jong-Rae;Son, Chang-Min;Lee, Jung-Ho;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.17-21
    • /
    • 2010
  • This paper presents the fabrication and performance measurement of a temperature sensor array on a flexible substrate attachable to a curved surface using MEMS technology. Specifically, the fabrication uses the well-developed printed circuit board fabrication technology for complex electrode definition. The temperature sensor array are lifted off with a $10{\times}10$ matrix in a $50\;mm{\times}50\;mm$ to visualize temperature distribution. Copper is used as temperature sensing material to measure the change in resistances with temperature increase. In a thermal oven with temperature control, the temperature sensor array is Characterized. The constant slope of resistance change is obtained and temperature distribution is measured from the relationship between resistance and temperature.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF