• Title/Summary/Keyword: Copper iodide(CuI)

Search Result 11, Processing Time 0.031 seconds

Binary Compound Formation upon Copper Dissolution: STM and SXPS Results

  • Hai, N.T.M.;Huemann, S.;Hunger, R.;Jaegermann, W.;Broekmann, P.;Wandelt, K.
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.198-205
    • /
    • 2007
  • The initial stages of electrochemical oxidative CuI film formation on Cu(111), as studied by means of Cyclic Voltammetry (CV), in-situ Scanning Tunneling Microscopy (STM) and ex-situ Synchrotron X-ray Photoemission Spectroscopy (SXPS), indicate a significant acceleration of copper oxidation in the presence of iodide anions in the electrolyte. A surface confined supersaturation with mobile CuI monomers first leads to the formation of a 2D-CuI film via nucleation and growth of a Cu/I-bilayer on-top of a pre-adsorbed iodide monolayer. Structurally, this 2D-CuI film is closely related to the (111) plane of crystalline CuI (zinc blende type). Interestingly, this film causes no significant passivation of the copper surface. In an advanced stage of copper dissolution a transition from the 2D- to a 3D-CuI growth mode can be observed.

CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-pot Synthesis of 1,4-Dihydropyridines

  • Safaei-Ghomi, Javad;Ziarati, Abolfazl;Teymuri, Raheleh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2679-2682
    • /
    • 2012
  • A simple one-pot synthesis of two derivatives of 1,4-dihydropyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydropyridines have attracted large interest due to pharmacological and biological activities.

High performance top-emitting OLEDs with copper iodide-doped hole injection layer

  • Lee, Jae-Hyun;Leem, Dong-Seok;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.492-495
    • /
    • 2008
  • Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped NPB as a p-doped hole injection layer to improve hole injection from a silver bottom electrode. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB. The devices result in high efficiency of 69 cd/A with almost Lambertian emission pattern.

  • PDF

Anodic Stripping Voltammetric Determination of Iodide Ion with a Cinchonine-Copper(Ⅱ) Complex Modified Carbon Paste Electrode (Cinchonine-Copper(Ⅱ) 착물로 변성된 탄소반죽전극을 이용한 요오드 이온의 양극벗김전압전류법 정량)

  • Kwak, Myung Keun;Park, Deog Soo;Jeong, Euh Duck;Won, Mi Sook;Shim, Yoon Bo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.341-346
    • /
    • 1996
  • Electrochemical determination of iodide was carried out by stripping voltammetry with a $(Cin)Cu(NO_3)_2$ modified-carbon paste electrode. Iodide was coordinated onto the electrode surface containing $(Cin)Cu(NO_3)_2$ via ion exchange. The oxidation peak potential of incorporated iodide was +0.72 V. The optimum analytical conditions for the determination of iodide were investigated using linear sweep voltammetry. Optimum conditions for the electrochemical determination of iodide were as follows: i) A predeposition solution was 0.1 M $KNO_3.$ ii) The deposition time was 10 min. iii) The composition of the electrode was 40% (w/w). The detection limit for iodide was $1.0{\times}10^{-6}M$ and the relative standard deviation was ${\pm}5.5%\;in\;2.0{\times}10^{-5}M$(four repetitions). The interference effect of other anions were also investigated. $Cl^-,\;Br^-,\;C_2O_4^{2-},\;and\;ClO_4^-$ ions do not interfere for the determination of iodide. When $SCN^-$ was added to the deposition solution, the oxidation peak current of iodide ion was decreased roughly 32%.

  • PDF

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

A Preliminary Study on the Feasibility of Copper Mesh as an Off-Gas Iodine Capturing Medium for Pyroprocessing (파이로프로세싱 배기체 요오드 포집을 위한 구리메쉬 적용 가능성에 대한 기초연구)

  • Jeon, Min Ku;Lee, Tae Kyo;Choi, Yong Taek;Eun, Hee-Chul;Choi, Jung Hoon;Park, Hwan-Seo;Hur, Jin-Mok;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2015
  • A commercially available copper mesh was investigated as an iodine off-gas capturing medium for pyroprocessing, with an aim to replace costly silver based adsorbents. Theoretical calculation results suggested that the reaction between metallic copper and gaseous iodine will occur spontaneously to produce copper iodide in the temperature range of 100 ~ 500℃. The effect of the reaction temperature on iodine capturing efficiency was investigated by experimentation, and it was found that 5 and 6 wt% of iodine (initial mass 2.0 g) was captured by a single copper mesh (0.26 g) at 300 and 400℃, respectively. The repeated experimental results also suggested that copper utilization can be increased with the help of the spontaneous detachment of the reaction product (CuI) from a copper mesh. The formation of the CuI phase was confirmed using the X-ray diffraction technique, and the surface morphology of the reaction product was observed using scanning electron microscopy.

A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration (이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구)

  • Jeon, Sang Soo;Kim, Ji Jung;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).

A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode (RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰)

  • Nam, Sang Cheol;Um, Sung Hyun;Lee, Choong Young;Tak, Yongsug;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.645-652
    • /
    • 1997
  • Electrochemical characteristics and kinetic parameters of copper ion reduction were investigated with a platinum rotating disk electrode (RDE) in a diffusion controlled region. Reduction of Cu(II) in sulfate had one-step two-xelectron process, while the reduction of Cu(II) in chloride solution was involved two one-electron processes. The transfer coefficient of Cu(II) in sulfate solution was lowest, and the transfer coefficient of Cu(I) in halide solutions had the value of nearly one. In chloride solutions, electrodeposition rate of Cu(II) was about one hundred times faster than Cu(I). Diffusion coefficient increased in the order of Cu(II) in chloride solution, Cu(I) in the iodide, bromide, chloride solution, Cu(II) in sulfate solution. The calculated ionic radii and activation energy for diffusion decreased in the same order as above. Morphological study on the copper electrodeposition indicated that the electrode surface became rougher as both concentration and reduction potential increases, and the roughness of the surface was analyzed with UV/VIS spectrophotometer.

  • PDF

Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells (전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구)

  • Kiseok Jeon;Minseob Kim;Eunbi Lee;Jinho Shin;Sangwoo Lim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2023
  • Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.