• Title/Summary/Keyword: Copper exposure

Search Result 171, Processing Time 0.033 seconds

Feeding, excretion, survival, and histological alterations in zebrafish Danio rerio from single and combined exposure to microplastics and copper

  • Hyeon Jin Kim;So Ryung Shin;Jung Jun Park;Jung Sick Lee
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • This study evaluated the risk of single and combined exposure to microplastics in zebrafish (Danio rerio) through biomarkers, such as survival rate, excretion rate, and histological alterations of organ systems. The experimental groups were the control(Cont.), single microplastics exposure group(MPs, 1.83%/fish total weight(g)), the copper group(Cu, 21.6 ㎍ L-1), and a group with combined exposure to MPs and copper (MPs*Cu). The experiment was conducted with individual exposure (7 days) for MP excretion rate analysis and group exposure (14 days) for biomarker analysis. The daily excretion rate of MPs tended to decrease in a time-dependent manner. The copper concentration in the body was not significantly different between single and combined copper exposure. The degeneration of mucous cells in the skin, capillary dilation of the gill lamella, increased intestinal mucous, hepatocyte hypertrophy, and the degeneration of glomeruli and renal tubules were observed in all exposure groups. These histological alterations showed the highest tendency in the MPs*Cu group. In this study, the changes in biomarkers were attributed to the single effect of copper or the combined effect of copper and MPs rather than being solely influenced by MPs.

Adsorption of Oxygen and Segregation of Impurity on Copper Surface(polycrystal): An AES Study (다결정 구리 표면에서 산소 흡착과 불순물 표면적출 : AES에 의한 연구)

  • Byoung Sung Han
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.966-971
    • /
    • 1988
  • AES was used to study oxygen adsorption due to the oxygen exposure at 300\ulcorner temperature and segregation of impurities due to annealing on polycrystal copper surface. The intensity of peak of CuM2, 3VV and CuL3 VV increased with annealing time and the peak of CKLL increased after Ar ion bombardment. The effect of oxygen adsorption on copper surface at 300\ulcorner was verified by the decreased of peak of CuM2, 3VV and CuL3 VV as oxygen exposure increase. The binding energy of copper atoms gradualy shifts from 0.7eV to 1.5eV of copper atoms gradually shifts from 0.7eV to 1.5eV after a oxygen exposure. After the oxygen exposure, the width at half the height of CuM2, 3VV is larger 2V*C/S by the effect of chemical liaison of the copper aton with oxygen atom.

  • PDF

A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine (구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구)

  • Lee, Su-Gil;Kim, Jung-Hee;Kim, Seong-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress (중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성)

  • Park, Ki-Yun;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.107-117
    • /
    • 2009
  • Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

Fabrication of Carbon Nanofiber/Cu Composite Powder by Electroless Plating and Microstructural Evolution during Thermal Exposure (무전해 도금에 의한 탄소나노섬유/Cu 복합 분말 제조 및 열적 안정성)

  • Kim In-soo;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.39-42
    • /
    • 2004
  • Carbon nanofiber/Cu composite powder has been fabricated by electroless plating process. Microstructural evolution of the composite powder after heat treatment under vacuum, hydrogen and air environment was investigated. A dispersed carbon nanofiber coated by copper was produced at the as-plated condition. Carbon nanofiber is coated uniformly and densely with the plate shaped copper particles. The copper plates on the carbon nanofiber aggregate during the thermal exposure at elevated temperature in vacuum and hydrogen in order to reduce surface energy. The thermal exposure of the composite powder in air at $400^{\circ}C$ for 3 hours leads to the spherodization of the composite powder owing to oxidation of copper.

  • PDF

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Combined Effects of Copper and Temperature on Antioxidant Enzymes in the Black Rockfish Sebastes schlegeli

  • Min, Eun Young;Baeck, Su Kyong;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 2014
  • Copper has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in the water but also on the water quality. A laboratory experiment was conducted to assess copper toxicity in the black rockfish Sebastes schlegeli using a panel of antioxidant enzymes, including glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD), at different levels of copper at three water temperatures (WT, 18, 23, $28^{\circ}C$) for 4 days. After exposure to two copper concentrations (100 and $200{\mu}g/L$), GSH levels and GST activities increased significantly, depending on WT (P < 0.05) in the liver, gill, and kidney of the black rockfish. GPx and SOD activities decreased significantly with both increasing WT and copper treatment in the organs of black rockfish (P < 0.05). These changes can be seen as initial responses to temperature stress and as a sustained response to copper exposure. This also indicates that GSH and related enzymes activities were sensitive indexes to stress by toxicants such as copper. The present findings suggest that simultaneous stress due to temperature change and copper exposure can accelerate changes in enzymes activities in the black rockfish. This provides another example of synergism between environmental temperature and pollutants, which may have important implications for the survival of fish in polluted environments during seasonal warming and/or global climate change.

Supplementary prenatal copper increases plasma triiodothyronine and brown adipose tissue uncoupling protein-1 gene expression but depresses thermogenesis in newborn lambs

  • Smith, Stephen B.;Sweatt, Craig R.;Carstens, Gordon E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.506-514
    • /
    • 2020
  • Objective: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. Methods: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6℃) or warm (28℃) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers. Results: Prenatal Cu exposure increased ewe plasma triiodothyronine (T3) and thyroxine concentration (T4) (p<0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T3, T4, glucose, or nonesterified fatty acid concentration (p≥0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p≤0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p≥0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p<0.001), increased BAT cytochrome c oxidase activity (p<0.01), and depressed plasma fatty acid concentrations (p<0.001). Conclusion: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.

Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

  • Tran, Thi Ngoc Lan;Nguyen, Thi Thanh Binh;Nguyen, Nhi Tru;Yoshino, Tsujino;Yasuki, Maeda
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time.

Combined effects of copper and temperature on Hematological constituents in the Rock fish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 혈액학적 성분변화에 미치는 구리 및 온도의 복합적 영향)

  • Baeck, SuKyong;Min, EunYoung;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.57-65
    • /
    • 2014
  • Copper ($CuSO_4$) has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in water but also on water quality. The susceptibility of the rockfish, Sebastes schlegeli to copper was evaluated at three water-temperatures (WT; 18, 23 and $28^{\circ}C$) for 4 days. After the exposure of two copper concentrations (100 and $200{\mu}g/L$), a hematological effect was exerted on rockfish, by causing changes in red blood cell count and hematocrit value at $28^{\circ}C$. Total protein levels of the fish showed a tendency of co-increase with glucose depend on the WT, after copper exposure. However, the plasma calcium and magnesium levels were significantly increased at $200{\mu}g/L$ copper, regardless of the WT. Enzymes activities including ALT and LDH in serum were also significantly increased depend upon the copper treatment only. This indicates that inorganic components and enzymes activities were sensitive indexes to stress by toxicant such as copper. The cortisol levels were significantly elevated by both WT rising and copper treatment in serum of rock fish. In conclusion, these changes can be seen as an initial response to temperature stress and as a sustaining response to copper exposure. The present findings suggest that a simultaneous stress by temperature change and copper exposure could accelerate an alteration of hematological and plasma biological parameters in the rockfish.