• Title/Summary/Keyword: Copper electrode

Search Result 377, Processing Time 0.031 seconds

Research on Glass Dielectric Capacitive Coupling Wireless Power Transfer Using Transparent Electrode (투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구)

  • Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.286-289
    • /
    • 2018
  • This paper tests the feasibility of using the transparent electrode as the electrode of the capacitor in order to use the vehicle glass of the electric vehicle for a capacitive coupling wireless transfer (CCWPT). Large coupling capacitance can be obtained due to large area and high permittivity using the glasses of an electric vehicle. However, if an electrode is formed on a metal such as copper, then a view cannot be guaranteed and a transparent electrode can pose a solution. Therefore, the coupling capacitor is implemented by forming a glass dielectric with an ITO transparent electrode on one side through a semiconductor deposition process. The loss of the coupling capacitor is investigated, and a 200 W CCWPT prototype is fabricated and tested for its characteristics and power transfer.

Electric Conduction Properties of NaCl Electrolyte as a Function of Electrode Materials (전극재료에 따른 NaCl 전해질의 전기전도특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2026-2031
    • /
    • 2010
  • The electrical characteristics of galvanic cell which is composed of the cathode electrode(graphite, carbon and copper) and the anode electrode(Zn and Mg) were investigated. For this research as electrolyte 2~12 wt% NaCl aqueous solution were used. At graphite cathode electrodes which use Zn and Mg with the anode electrode, the open circuit voltage was 1.3V most highly. The maximum output power increased as the electrolyte concentration increased, due to a increase in ion density. When Zn and Mg with the anode electrode, the maximum output power respectively was evaluated as 2.2mW and 5.5mW about the graphite cathode electrode in the NaCl 4wt%. The research results indicated that the output power of cell which is composed with graphite with the cathode and Mg with the anode was most excellent and the efficiency of the cell could be enhanced by increasing the electrolyte concentration.

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Electrochemical Study of the Effect of Additives on High Current Density Copper Electroplating (고전류밀도 구리도금에서 첨가제에 따른 전기화학적 특성변화 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.43-48
    • /
    • 2011
  • The maximum current density of copper electrorefining is 350 A/$m^2$ and the higher current density is required to promote the copper productivity. The 1000 A/$m^2$ high current density is possible when rotating disc electrode is employed to reduce diffusion thickness. The copper electroplating with 1000 A/$m^2$ is possible at 400 rpm. Thiourea and glue were used to improve the electrodeposition behaviors during copper electrorefining process. Potentiodynamic polarization tests were conducted to investigate the effects of additives on copper electrodeposition. Galvanostatic tests were also conducted at 1000 A/$m^2$. Copper were electroplated on cylindrical rotating electrodes to give the uniform flow on the electrode surface. The lowest surface roughness was obtained when 16 ppm thiourea was added to the electrolytes. The surface roughness was increased with glue concentration. The surface hardness was not influenced by addition of glue. The copper nuclei were getting smaller with thiourea concentration, however there is no glue effects on copper nucleation.

Experimental Determination of Equilibrium Constants of Copper Complexes in Aqueous Environment

  • Cho, Young-Il
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.555-562
    • /
    • 2012
  • The experimental determination of equilibrium constants is required to estimate concentrations of reagents and/or products in environmental chemical reactions. For an example, the choice of copper (Cu) complexation reactions was motivated by their fast kinetics and the ease of measurement of Cu by an ion-sensitive electrode. Each individual titrant of sulfate ($SO{_4}^{2-}$) and oxalate ($C_2O{_4}^{2-}$) was expected to have its own unique characteristics, depending on the bonding in Culigands connected to the aqueous species. The complexation reaction of Cu with $SO{_4}^{2-}$ somewhat fast reached equilibrium status compared with $C_2O{_4}^{2-}$. The experimental equilibrium constants ($K_{eq}$) of copper sulfate ($CuSO_4$) and copper oxalate ($CuC_2O_4$) were determined $10^{2.2}$ and $10^{3{\sim}4.3}$, respectively.

Improvement of the ED-Drilling Machinability using Multi-hole Electrodes (Multi-hole 전극에 의한 Ed-Drilling 가공성 향상)

  • Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.88-93
    • /
    • 2012
  • This paper describes the machinability of the sintered carbide and tool-die steel(STD-11) by electric discharge drilling with various tubular electrodes which have multi-holes. Various types of electrode which have different diameters and materials are used with the application of continuous direct current and axial electrode feed. Inner part of electrodes are inserted with smaller tubes or Y-channel or bar. In ED-Drilling, the dielectric flushed down the interior of the rotating tube electrode, in order to remove machining debris from the hole. As result of experiments, the bigger the diameter of the electrode is, the lower the material removal rate is. Machinability of copper electrode is higher than that of brass. In machining of sintered carbide, to use oil is better than distilled water as dielectric.

Resistance Spot Welding Characteristics of Mg Alloy Using Process Tape (Process Tape를 사용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2013
  • Recently, studies about application of magnesium alloy sheet to automotive bodies are on the increase. For application to automotive bodies, researches about characteristics of resistance spot welding of magnesium alloy sheet are essential. Electrode life of resistance spot welding of magnesium alloy is very short due to sticking of magnesium alloy to copper alloy electrode. To increase electrode life, most effective method is inserting cover plate between electrode and magnesium sheet. But application of cover plate to actual process is difficult and decreases welding productivity. Process tape supplied automatically as cover plate can minimize lose of productivity and increase welding quality. In this study, resistance spot welding of magnesium alloy is carried out with applying process tape. Acceptable welding current region according to electrode force and welding time is determined.

Reaction Route to the Crystallization of Copper Oxides

  • Chen, Kunfeng;Xue, Dongfeng
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including $Cu_2O$ and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of $Cu_2O$ by reduction route, the oxidation of copper to $Cu_2O$ or CuO, the chemical transformation of $Cu_2O$ to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.

Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon (전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작)

  • Lee, Ju-Yeol;Lee, Sang-Yeol;Lee, Ju-Yeong;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

Determination of Thioglycolic acid in the presence of Copper(II) by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 구리이온(II) 존재하에서 티오글리콜산의 정량)

  • Hong, Mi-Jeong;Kwon, Young-Sun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Determination method of trace thioglycolate has been studied by adsorptive stripping voltammetry. Copper(II)-thioglycolate complex is adsorbed at the hanging mercury drop electrode and stripped during cathodic scan. Electrolyte was used pH 6.5 phosphate and pH 9.5 borate buffer solutions. Optimal conditions were a copper(II) concentration $1{\times}10^{-4}M$, an adsorption accumulation potential -0.2V, an adsorption accumulation time 60 sec and a scan rate 20mV/sec. A detection limit of $1{\times}10^{-9}M$ thioglycolate was obtained. The method was applied to the determination of thioglycolate in cold wave fluids and depilating creams.

  • PDF