• 제목/요약/키워드: Copper Film

검색결과 567건 처리시간 0.028초

Research on the copper diffusion process in germanium metal induced crystallization by different thickness and various temperature

  • Kim, Jinok;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.289.1-289.1
    • /
    • 2016
  • Germanium (Ge) with higher carrier mobility and a lower crystallization temperature has been considered as the channel material of thin-film transistors for display applications. Various methods were studied for crystallizaion of poly-Ge from amorphous Ge at low temperature. Especially Metal induced crystalliazation (MIC) process was widely studied because low process cost. In this paper, we investigate copper diffusion process of different thick (70 nm, 350 nm) poly-Ge film obtained by MIC process at various temperatures (250, 300, and $350^{\circ}C$) through atomic force microscopy (AFM), Raman spectroscopy, and secondary ion mass spectroscopy (SIMS) measurement. Crystallization completeness and grain size was similar in all the conditions. Copper diffusion profile of 370 nm poly-Ge film show simirly results regardless of process temperature. However, copper diffusion profile of 70 nm poly-Ge film show different results by process temperature.

  • PDF

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

스프링클러 동배관의 공식부식 발생원인 (Investigation on Causes of Pitting Corrosion in Sprinkler Copper Tubes)

  • 이재봉;정호석
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.6-14
    • /
    • 2014
  • Copper metal is widely used in tubes installed in sprinkler water services because of its excellent corrosion resistance. Copper corrosion is considered to be insignificant in water system and the incident of copper pipeline failure is relatively low. However, pitting corrosion is a major problem with all copper tubes. In this study, leaked sprinkler copper tubes were collected from three different locations and examined on the causes of pitting corrosion of copper tubes in sprinkler water plumbing systems. Electrochemical tests such as potentiodynamic polarization, as well as surface and chemical analyses were performed. Results show that pitting corrosion of copper tubes were found as Type I pitting that the carbon film formed on the copper tubes have a harmful effects, causing the pinhole failure in the pipe and resulting in leakage of water. The contermeasures on Type I pitting corrosion of copper tubes were proposed.

Binary Compound Formation upon Copper Dissolution: STM and SXPS Results

  • Hai, N.T.M.;Huemann, S.;Hunger, R.;Jaegermann, W.;Broekmann, P.;Wandelt, K.
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.198-205
    • /
    • 2007
  • The initial stages of electrochemical oxidative CuI film formation on Cu(111), as studied by means of Cyclic Voltammetry (CV), in-situ Scanning Tunneling Microscopy (STM) and ex-situ Synchrotron X-ray Photoemission Spectroscopy (SXPS), indicate a significant acceleration of copper oxidation in the presence of iodide anions in the electrolyte. A surface confined supersaturation with mobile CuI monomers first leads to the formation of a 2D-CuI film via nucleation and growth of a Cu/I-bilayer on-top of a pre-adsorbed iodide monolayer. Structurally, this 2D-CuI film is closely related to the (111) plane of crystalline CuI (zinc blende type). Interestingly, this film causes no significant passivation of the copper surface. In an advanced stage of copper dissolution a transition from the 2D- to a 3D-CuI growth mode can be observed.

As, Sb, Bi, Pb가 조동의 부동태에 미치는 영향 (Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode)

  • 안승천;이상문;김용환;정원섭;정우창
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.215-222
    • /
    • 2006
  • The passivity behavior of copper anode containing impurities in copper sulfate solution for electrorefining process was studied at several different levels of impurities such as As, Sb, Bi and Pb. The passivity behavior was investigated by electrochemical techniques (galvanostatic, potentiodynamic and cyclic voltammetry tests) and surface analysis (optical microscopy, electron probe microanalysis, scanning electron microscopy). The results were that arsenic, antimony inhibited passivation and bismuth accelerated it and lead containing anode showed different passivity behavior from above anodes. The improved passivity characteristics could be explained by decrease in oxygen content in passivity film which resulted from a reaction among the impurities, oxygen and copper in the anode. The SEM image revealed that arsenic or antimony containing anode exhibited a porous passivity film and bismuth containing anode showed the compact passivity film and lead containing anode had loose passivity film on anode.

이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성 (Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound)

  • 강형대;김화진;이재흥;서동학;홍영택
    • 접착 및 계면
    • /
    • 제8권1호
    • /
    • pp.15-27
    • /
    • 2007
  • 폴리이미드 필름과 구리의 접착력을 향상시키기 위하여 이온빔과 실란-이미다졸 커플링제를 사용하여 폴리이미드 표면개질을 실시하였다. 실란-이미다졸 커플링제는 구리와의 배위결합을 형성하는 이미다졸 그룹과 실록산 폴리머를 형성하는 메톡시 실란 그룹을 함유한다. 폴리이미드 필름표면은 아르곤/산소 이온빔으로 일차로 처리하여 친수성을 높인 폴리이미드 필름에 커플링제 수용액에 침지하여 폴리이미드 필름 표면에 커플링제를 그라프트시켜 표면개질을 실시하였다. XPS 스펙트럼 분석결과 아르곤/산소 플라즈마 처리는 폴리이미드 표면에 하이드록시 및 카르보닐 그룹과 같은 산소 기능성기를 형성함을 알 수 있었고 폴리이미드 필름 표면에 실란-이미다졸과의 커플링반응에 의하여 표면이 개질되었음을 확인하였다. 이온빔을 사용하여 그라프트된 폴리이미드 필름과 구리와의 접착력은 처리되지 않은 폴리이미드 필름과의 접착력 보다 높은 접착력을 나타내었다. 또한 커플링제로 그라프트된 폴리이미드 필름의 접착력 보다 아르곤/산소의 양자화 이온을 이용하여 개질한 그라프트된 폴리이미드 필름의 시편이 더 높은 접착력을 나타내었다. 구리-폴리이미드 필름의 계면으로부터 박리된 층은 분석결과 완전히 서로 다른 화학적 조성을 나타내었는데 이것으로부터 박리가 접합면의 커플링제 내에서 일어나는 것보다는 폴리이미드와 커플링제의 사이에서 일어남을 확인하였다.

  • PDF

PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성 (Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery)

  • 심흥택;전법주;변동진;이중기
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.173-178
    • /
    • 2004
  • 플라즈마 화학 기상 증착법으로 구리 막$(foil,\;35{\mu}m)$표면 위에 $SiH_4$와 Ar혼합가스를 공급하여 실리콘 박막을 증착 한 후 리튬 이온전지의 음극으로 활용하였다. 증착 온도에 따라 비정질 실리콘 박막과 copper silicide박막 형태의 다른 두 종류의 실리콘 박막 구조가 형성되는 것이 관찰되었다. $200^{\circ}C$ 이하의 온도에서는 비정질 실리콘 박막이 증착되었고, $400^{\circ}C$ 이상의 온도에서는 실리콘 라디칼과 확산된 구리 이온의 반응에 의한 그래뉼러 형태의 copper silicide박막이 형성되었다. 비정질 실리콘 박막은 copper silicide박막 보다 높은 용량을 나타냈으나 충·방전 반응에 의한 급격한 용량 손실을 나타냈다. 이것은 비정질 실리콘 박막의 부피 팽창에 의한 것으로 추정된다. 그러나 copper silicide 박막을 음극으로 사용했을 때는 copper silicide를 형성한 실리콘과 구리의 화학결합이 막 구조의 부피변화를 감소 시켜줄 뿐 아니라 낮은 전기 저항을 갖기 때문에 싸이클 특성이 향상되었다.

Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics

  • Hwang, Jaeeun;Kim, Sinhee;Ayag, Kevin Ray;Kim, Hongdoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.147-150
    • /
    • 2014
  • Copper ink has been prepared by mixing copper(II) formate and 2-ethyl-1-hexylammonium bicarbonate (EHABC) to overcome some weak points such as aggregation and degradation of copper nano-type ink. Ink was coated on glass substrate and calcined at $110^{\circ}C$ to $150^{\circ}C$ to generate electrically conductive copper film under two different atmospheres such as nitrogen gas and gaseous mixture of formic acid and methanol. The lowest resistivity of $1.88{\mu}{\Omega}{\cdot}cm$ of copper film was obtained at $150^{\circ}C$ in gaseous formic acid condition. The long-term resistivity shows to increase from $1.88{\mu}{\Omega}{\cdot}cm$ to $2.61{\mu}{\Omega}{\cdot}cm$ after one month.

ECR plasma로 전처리된 Cu seed층 위에 전해도금 된 Cu 막에 대한 Annealing의 효과 (Effects of Post-deposition Annealing on the Copper Films Electrodeposited on the ECR Plasma Cleaned Copper Seed Layer)

  • 이한승;권덕렬;박현아;이종무
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.174-179
    • /
    • 2003
  • Thin copper films were grown by electrodeposition on copper seed layers which were grown by sputtering of an ultra-pure copper target on tantalum nitride-coated silicon wafers and subsequently, cleaned in ECR plasma. The copper films were then subjected to ⅰ) vacuum annealing, ⅱ) rapid thermal annealing (RTA) and ⅲ) rapid thermal nitriding (RTN) at various temperatures over different periods of time. XRD, SEM, AFM and resistivity measurements were done to ascertain the optimum heat treatment condition for obtaining film with minimum resistivity, predominantly (111)-oriented and smoother surface morphology. The as-deposited film has a resistivity of ∼6.3 $\mu$$\Omega$-cm and a relatively small intensity ratio of (111) and (200) peaks. With heat treatment, the resistivity decreases and the (111) peak becomes dominant, along with improved smoothness of the copper film. The optimum condition (with a resistivity of 1.98 $\mu$$\Omega$-cm) is suggested as the rapid thermal nitriding at 400oC for 120 sec.

불화칼륨이 첨가된 피로인산구리 도금욕에서 마그네슘합금의 전기도금 (Electroplating on Magnesium Alloy in KF-Added Pyrophosphate Copper Bath)

  • 이정훈;김용환;정우창;정원섭
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.218-224
    • /
    • 2010
  • Direct copper electroplating on Mg alloy AZ31B was carried out in a traditional pyrophosphate copper bath containing potassium fluoride. Electrochemical impedance spectroscopy and polarization methods were used to study the effects of added potassium fluoride on electrochemical behavior. The chemical state of magnesium alloy in the electroplating bath was analyzed by X-ray photoelectron spectroscopy. Adhesion of the copper electroplated layer was also tested. Due to the added potassium fluoride, a magnesium fluoride film was formed in the pyrophosphate copper bath. This fluoride film inhibits dissolution of Mg alloy and enables to electroplate copper directly on it. A dense copper layer was formed on the Mg alloy. Moreover, this copper layer has a good adhesion with Mg alloy substrate.