• Title/Summary/Keyword: Copper Catalyst

Search Result 140, Processing Time 0.03 seconds

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles

  • Nam, Ki-Mok;Mees, Karina;Park, Ho-Seon;Willert-Porada, Monika;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2431-2437
    • /
    • 2014
  • In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.

Microwave Assisted, Solvent- and Ligand-Free Copper Catalyzed N-Arylation of Phenylurea with Aryl Halides

  • Gavade, Sandip;Shingare, Murlidhar;Mane, Dhananjay
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4167-4170
    • /
    • 2011
  • An inexpensive and efficient catalyst system has been developed for the N-arylation of phenylurea including a variety of aryl halides. This simple protocol uses $Cu_2O$ as the catalyst, microwave assisted, solvent- and ligand-free, $K_3PO_4{\cdot}H_2O$ as the base.

NO Removal Reactoin by Cu/zeolite (CU/제올라이트에 의한 NO 제거반응)

  • 신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.5-11
    • /
    • 1991
  • To remove NO from flue gas, a direct decomposition method to $N_2$ and $O_2$ was investigated by using copper / zeolite catalyst. The copper ion-exchanged HY type zeolite has high activity on NO decomposition. The decomposition activity was increased with the increase of ion-exchange level, contacting time and reaction temperature in the range of 30$0^{\circ}C$ -50$0^{\circ}C$ , and decreased with the oxygen addition.

  • PDF

Synthesis of Methanol from Carbon Dioxide (I). Study on Cu / ZnO Catalyst System (이산화탄소에 의한 메탄올 합성 (제 1 보). Cu / ZnO 촉매계 연구)

  • Sung Yun Cho;Ki Won Jun;Dae Chul Park;Kyu Wan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.558-567
    • /
    • 1989
  • The synthesis of methanol from carbon dioxide and hydrogen was studied for various compositions of Cu/ZnO catalyst system. Effect of the composition ratio of CuO and ZnO on the catalytic activity in the above reaction and the relationship between the activity and the characteristics of the catalysts were explained from the result of surface area measurements, SEM, XRD, and XPS. The major products of the reaction were methanol and carbon monoxide. The selectivity to methanol increased with increase of the copper oxide content in the catalyst up to CuO: ZnO = 30:70 weight ratio, and decreased rapidly when the content is above 70%. SEM and BET measurements, indicate that this point corresponds to the increasing point of the catalyst crystallite size and the decreasing point of the surface area. As to the Cu/Cu + Zn atomic ratio, the surface concentration of copper measured by XPS decreased remarkably when the copper oxide content in catalyst was higher than 50%. All the unreduced catalysts had almost same binding energy of Cu(2P3) level, but the binding energy for $Cu(2P^3)$ level of reduced catalysts was lowered than that of calcined catalysts. The surface copper species which was in the maximum amount when the CuO:ZnO composition in the catalyst was 30:70, existed as zero valent copper. This result agreed with the experimental result that the highest rate of methanol formation was observed when the CuO content in the catalyst was 30%. It was postulated that these reduced catalysts performed with a relatively strong basicity because the formation rate of acetone was higher than that of propylene in isopropanol decomposition as measured in a pulse type reactor.

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

A Study on the Synthesis of p-phenylenediamine (PPD) Using Copper Catalyst (Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구)

  • Kim, Jungsuk;Lee, Sang-yong;Lee, Jungho;Choi, Won Choon;Kang, Na Young;Park, Sunyoung;Kim, Kiwoong;Lim, Jong Sung;Park, Yong-Ki;Seo, Hwimin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.425-430
    • /
    • 2016
  • p-Phenylenediamine (PPD) was synthesized by aromatic amination of p-diiodobenzene (PDIB) using liquid ammonia and Cu-catalysts. The effects of the catalyst, reductant, ammonia quantity and reaction temperature on PPD production were investigated. Cu(I) compounds and Cu powder were selected as catalyst due to a higher selectivity than Cu(II) compounds. As the catalyst quantity increased, rate of PPD production as well as side reaction of aniline decreased with increasing the quantity of ammonia. Reductants such as ascorbic acid, hydrazine and dihydroxyfumaric acid were tested to lower the catalyst loading. The use of reductants resulted in increasing the reaction rate but also increased the amount of aniline The rate of reaction using ascorbic acid or dihydroxyfumaric acid was faster than that using hydrazine. The lowest side reaction of aniline was found in dihydroxyfumaric acid of reductants investigated.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.