• Title/Summary/Keyword: Copper (II)

Search Result 557, Processing Time 0.029 seconds

Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes

  • Sailo, Lalsaimawia;Pachuau, Lalramnghaki;Yang, Jae Kyu;Lee, Seung Mok;Tiwari, Diwakar
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • Remediation of wastewater contaminated with metal(II)-complexed species (Cu(II)-NTA (NTA: nitrilotriacetic acid), Cu(II)-EDTA (EDTA: ethylenediamine tetraacetic acid) and Cd(II)-EDTA is attempted using the potential applicability of ferrate(VI). Kinetics of pollutant degradation is obtained with the removal of ferrate(VI) studied at wide range of pH (8.0-10.0) and the concentration of metal(II)-complexed species (0.3 to 15.0 mmol/L) employing a constant dose of ferrate(VI) i.e., 1.0 mmol/L. Pseudo-first-order and pseudo-second-order rate constants were obtained in the reduction of ferrate(VI) which was then employed to obtain the overall rate constants of the pollutant degradation. The mineralization of NTA and EDTA was obtained with the change in TOC (total organic carbon) values collected by the ferrate(VI) treated pollutant samples. Decrease in pH and molar pollutant concentrations was greatly favored the percent mineralization of NTA or EDTA by the ferrate(VI) treatment. The treated pollutant samples were filtered and subjected for AAS (atomic absorption spectrophotometric) analysis to assess the simultaneous removal of copper and cadmium from aqueous solutions at the studied pH as well at the elevated pH 12.0. Results show that an enhanced removal of cadmium or copper was achieved at pH 12.0. Overall, ferrate(VI) possesses multifunctional application in wastewater treatment as it oxidizes the degradable impurities and removes metallic impurities by coagulation process.

Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes

  • Kim, Hyun-Ja;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2565-2570
    • /
    • 2011
  • The reaction of bromoacetonitrile with 3,14-dimethyl-2,6,13,17-tetraazatetracyclo[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{10}$) containing a N-$CH_2$-N linkage produces 17-cyanomethyl-3,14-dimethyl-2,6,13,17-tetraazatetracyclo-[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{11}$). The mono-N-functionalized macrocyclic complexes $[ML^2]^{2+}$ (M = Ni(II) or Cu(II); $L^2$ = 2-cyanomethyl-5,16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^{7.12}$]docosane) can be prepared by the reaction of $L^{11}$ with nickel(II) or copper(II) ion in acetonitrile. The N-$CH_2CN$ group attached to $[ML^2]^{2+}$ readily reacts with water or methanol to yield the corresponding complexes of $HL^3$ bearing one N-$CH_2CONH_2$ pendant arm or $L^4$ bearing one $N-CH_2C(=NH)OCH_3$ group. The $N-CH_2CONH_2$ or $N-CH_2C(=NH)OCH_3$ group of each complex is coordinated to the central metal ion. Both $[NiL^4(H_2O)]^{2+}$ and $[CuL^4]^{2+}$ are quite stable in acidic aqueous solutions, but undergo hydrolysis to yield $[Ni(HL^3)(H_2O)]^{2+}$ or $[Cu(HL^3)]^{2+}$ in basic aqueous solutions. In contrast to $[Cu(HL^3)]^{2+}$, $[Ni(HL^3) (H_2O)]^{2+}$ is readily deprotonated to form $[NiL^3 (H_2O)]^+$ ($L^3$ = a deprotonated form of $HL^3$) in basic aqueous solutions.

Influence of Dietary Zinc, Copper and Cadmium Levels on Rat Liver Aryl Sulfotransferase IV Activity

  • Chung Keun Hee;Ringel David P.;Shin Kyung Ok
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2006
  • Aryl sulfotransferase (AST) IV is a liver enzyme involved in detoxication and has been shown to be susceptible to down regulation by a number of hepatotoxic xenobiotics. Studies presented here to investigate the ability of biological and non-biological divalent metal cations on AST IV activity showed that AST IV was strongly inhibited following in vitro or in vivo exposure to. Zn ( II ), Co ( II ) or Cd ( II ). It was found that $0.025\sim$2.5 uM of these metal ions were sufficient to cause $50\%$ of inhibition in vitro in purified AST IV and $0.25\sim$25 uM of these metal ions in liver cytosolic fractions. For the in vivo study, 1,000 mg Cu ( II )/kg, 2,000 mg Zn ( II )/kg or 250 mg Cd( II )/kg was added to individual diets and administered to three (3) group; of mts over a 7 week period The Co ( II )-supplemented diet produced no apparent change in rat growth rate and resulted in 30-fold increase in liver cytotolic Cu ( II ) levels, suggesting that elevated levels of Cu ( II ) ion in the liver were responsible for the loss of AST IV activity. In contrast, the Zn ( II )-supplemented diet caused a decrease in rat growth rates and resulted in zero increase in liver Zn ( II ) levels, which suggested an indirect inhibition mechanism was caused by Zn ( II ) in the liver. Rats were fed the Cd-supplemented diet also displayed a decrease in growth rate with little or no change in liver Cu ( II ) or Zn ( II ) levels. When the liver cytosols of mts from the metal ion diets were immunochemically analyzed for the AST IV and albumin contents, no significant changes were observed in albumin levels. However, AST IV contents in the cytosols of mts fed the Zn ( II )-supplemented diets showed a slight decrease in amount These results showed that AST IV activity in vitro and in vivo can be inhibited by Co ( II ), Zn ( II ), and Cd ( II ) by apparently different mechanisms. The immediate response to a Zn injection showed a decrease in AST IV activity but not in the AST IV content in liver cytosol. These mechanisms appeared to involve direct actions of the metal ion on AST IV activity and indirect actions affecting AST IV amount.

Copper(II) Selective PVC Membrane Electrodes Based on Schiff base 1,2-Bis (E-2-hydroxy benzylidene amino)anthracene-9,10-dione Complex as an Ionophore

  • Jeong, Eun-Seon;Lee, Hyo-Kyoung;Ahmed, Mohammad Shamsuddin;Seo, Hyung-Ran;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.401-405
    • /
    • 2010
  • The Schiff base 1,2-bis(E-2-hydroxy benzylidene amino)anthracene-9,10-dione has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the copper ($Cu^{2+}$) ion. Potentiometric investigations indicate high affinity of these receptors for copper ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, DOP: 66 mg and KTpClPB as additive were added 50 mol % relative to the ionophore in 1 ml THF. The proposed sensor's detection limit is $2.8{\times}10^{-7}$ M over pH 5 at room temperature (Nernstian slope 31.76 mV/dec.) with a response time of 15 seconds and showed good selectivity to copper ion over a number of interfering cations.

Synthesis, Thermal Decomposition Pattern and Single Crystal X-Ray Studiesof Dimeric [Cu(dmae)(OCOCH3)(H2O)]2: A Precursor for the Aerosol Assisted Chemical Vapour Deposition of Copper Metal Thin Films

  • Mazhar, Muhammad;Hussain, S.M.;Rabbani, Faiz;Kociok-Kohn, Gabriele;Molloy, Kieran C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1572-1576
    • /
    • 2006
  • A dimeric precursor, $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ for the CVD of copper metal films, (dmaeH = N,N-dimethylaminoethanol) was synthesized by the reaction of copper(II) acetate monohydrate ($Cu(OCOCH_3)_2{\cdot}H_2O$) and dmaeH in toluene. The product was characterized by m.p. determination, elemental analysis and X-ray crystallography. Molecular structure of $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ shows that a dimeric unit $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ is linked to another through hydrogen bond and it undergoes facile decomposition at 300 C to deposit granular copper metal film under nitrogen atmosphere. The decomposition temperature, thermal behaviour, kinetic parameters, evolved gas pattern of the complex, morphology, and the composition of the film were also investigated.

Chromatic Characteristics of Copper Glaze as a Function of Copper Oxide Addition and Sintering Atmosphere

  • No, Hyunggoo;Kim, Soomin;Kim, Ungsoo;Cho, Wooseok
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.61-65
    • /
    • 2017
  • Examined in this study were the effects of copper oxide (II) addition and sintering conditions on the chromatic characteristics of copper glaze. Oxidatively sintered samples exhibited the negative increase of $CIEa^*$ and the positive increase of $CIEb^*$ with the increase of CuO concentration, leading to Green and Green-Yellow coloration. On the other hand, $CIEa^*$ and $CIEb^*$ of reductively sintered samples were positively increased in direct proportion. The green color of oxidatively sintered samples was originated from the $Cu^{2+}$ ions formed by the dissolution of CuO. The reductively sintered samples resulted in dull tone red color with low chroma. Such behavior seems to be influenced by the interplay of metal Cu aggregation, metal Cu globule, and $Cu_2O$ formed in the glaze layer through the redox interaction of CuO during the sintering process.