• Title, Summary, Keyword: Copper

Search Result 6,254, Processing Time 0.057 seconds

Zinc and Copper Intake with Food Analysis and Levels of Zinc and Copper in Serum, Hair and Urine of Female College Students (도시 여대생에 있어 식품분석에 의한 아연, 구리섭취량과 혈액, 머리카락, 소변의 아연, 구리 함량에 관한 연구)

  • 손숙미
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.705-712
    • /
    • 1999
  • The purpose of this study was to assess the zinc and copper nutritional status of 102 college women by measuring zinc and copper intake, hematological parameters of zinc and copper, hair zinc and urinary excretion of zinc and copper. The mean zinc intake was 5.5mg(45.8% RDA) with food analysis and 4.5mg(37.8% RDA) with computation from food composition table. The copper intake with food analysis was 2.3mg and 1.2mg with computation. Mean serum zinc concentration was 77.02ug/dl and the proportion of subjects with zinc deficiency estimated by serum zinc(<70ug/dl)was 23.0%. Mean serum copper concentration was 121.80ug/dl and 4.1% of subjects showed serum copper less than 70ug/dl, The mean ceruloplasmin concentration was 22.63mg/dl and the proportion of subjects whose ceruloplasmin was lower than 18-40mg/dl was 6.6%. The mean hair zinc of subjects was 143.8ppm and the mean hair copper was 11.2ppm. The mean urinary excretion of zinc was 0.43mg/day and the proportion of subjects with marginal deficiency estimated by urinary zinc excretion( <0.3mg/day) was 23.3%. The mean urinary copper excretion was 0.044mg/day which was within the normal range(0.01-0.06mg/day). Assessing by zinc content in hair, urine and serum, 22.9-23.3% of college women had bordeline zinc deficiency or zinc deficiency. Whereas 4.1-6.6% of college women was assessed copper deficiency estimated by serum copper and ceruloplasmin.

  • PDF

New Methods of Producing Copper Sulfate Crystals Using Small-Scale Chemistry(SSC) in Elementary School Science (초등과학에서 미량화학(SSC)을 이용한 황산구리 결정 만들기의 새로운 방법)

  • Han, Sang-Joon;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.981-992
    • /
    • 2008
  • This study examined how to produce new methods of copper (II) sulfate crystallization by using a small-scale chemistry tool such as small-scale reaction surface and petri dish. The making of copper(II) sulfate is included in the 5th grade elementary science textbooks. Various copper(II) compounds were reacted with a 2 M sulfuric acid solution. The result of this study is as follows: Seven small amounts of copper(II) compounds were reacted with a few drops of 2 M sulfuric acid solution at room temperature to make a copper(II) sulfate crystal of triclinic shape. Using the petri dish method, a copper(II) sulfate crystal could be identified within one hour of reacting copper(II) hydroxide, copper(II) carbonate, copper(II) nitrate, copper(II) perchlorate, cupric(II) formate from a few drops of 2 M sulfuric acid solution at room temperature. When using the lap top method for copper(II) perchlorate, cupric formate, a proper crystal could be identified within one hour as well. SSC methods were used for the first time to make a copper sulfate crystal via chemical reaction. We can make a copper(II) sulfate crystal using a simple method which is easier, safer and saves time in class. And since a small quantity of chemicals are being used in SSC chemical methods, waste is greatly reduced. This lessens the amount of environmental problems caused by the experiment. This can be helpful in preserving nature. In addition the cost of chemical and laboratory equipment is greatly reduced because it uses material that we find in our daily lives. There will be continued study of small-scale methods such as improvement of new programs, study and training of teachers, and securing SSC tools. I would like to suggest such as SSC methods are applicable in elementary School Science. I would like it to become a wide spread program.

Characteristic of Flotation for Recovery of Copper from Copper Slag in Kazakhstan (카자흐스탄 구리제련소 슬래그 내 구리회수를 위한 선별 특성)

  • Park, Jayhyun;Choi, Uikyu;Choe, Hongil;Shin, Shunghan
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.12-21
    • /
    • 2015
  • Almost all copper slags contain a considerable amount of Cu (0.5 - 3.7%) close to or even higher than copper ores. A number of methods for metal recovery from copper slag were reported These methods can be classified into three categories, flotation, leaching and roasting. Sulfide flotation method for the recovery of copper from Kazahstan copper furnace slag is discussed in this investigation. 50% of copper from the slag was recovered by sulfide flotation at pH 4. meanwhile 67% of copper from the slag was recovered at pH 11. Higher copper recovery result at pH 11 rather than that at pH 4 was caused by the fact that copper sulfides were floated in particle size fraction over $100{\mu}m$ in concentrates at pH 11. When the slag were ground below $74{\mu}m$by ball milling, the recovery of copper by floation in slag improved to 78 - 83% because of copper liberation effect.

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

Formation of copper films from copper formate by laser-induced pyrolytic decomposition (Copper formate의 레이저 유도 열 분해에 의한 Cu 박막의 제조)

  • Kim, Jae-Kwon;Park, Se-Ki;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1444-1446
    • /
    • 1998
  • Direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films using a focused argon ion laser beam($\lambda$ =514.5nm) on a glass. The thickness and linewidth of the deposited copper films were considered as a function of laser power and scan speed. As the result from AES, there are no other elements except for copper after decomposition in the atmospheric ambient.

  • PDF

Fabrication of copper thin foils with 36 microns by cold rolling (냉간 압연 공정에 의한 두께 $36{\mu}m$ 동극박 제조 공정 해석)

  • Lee, S.H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.413-416
    • /
    • 2007
  • In general, by means of the electrodepositing technique, a copper foil sample was prepared with a high purity and a high density. But the mechanical properties of the electrodepositing copper foil was lower than it's the rolling copper foil. However, the production of copper foil with approximately 36 microns thick in rolling process was very difficult. This paper describes the outline of the high accuracy cold rolling in 6 high mill which was developed for the purpose of rolling very thin accurate gauge copper foil(36 micron thick), and give several rolling characteristic of 600 mm wide copper foil. a) Large strain can be accumulated pass by pass in industrial multi-pass rolling processing to overcome large critical strain for thickness accuracy through optimization of rolling schedule. b) Also, permissible tension for rolling 0.45 $\sim$ 0.036 mm thick copper strip stably in accordance with the each pass work had been established by FEM simulation results. c) During the plate rolling process, considerable values of the forces of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation region. A numerical simulation of roll deflection during cold rolling is presented in the paper. d) The proposed pass schedule can roll very thin copper foil of 36 micron thickness to a tolerance of ${\pm}1$ microns. The validity of simulated results was verified into rolling experiments on the copper foil.

  • PDF

Effect of Copper ion on Xanthine Oxidase Activity and Type Conversion (Xanthine oxidase 활성 및 형전환에 미치는 구리이온의 영향)

  • Huh, Keun;Lee, Sang-Il;Park, Jeen-Woo
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.211-217
    • /
    • 1994
  • Copper intoxication and disturbance of copper metabolism induced various oxygen-derived free radicals related damages. The effect of copper ion on xanthine oxidase activity and type conversion of the enzyme which is concerned to generation of reactive oxygen species, was investigated, It was observed that xanthine oxidase activity was increased by addition of copper ion in the reaction mixture in proportional to the concentration of the metal ion until $60\;{\mu}M$, while the enzyme activity was inhibited in higher concentration of copper treatment. On the other hand, xanthine dehydrogenase activity was inhibited by copper ion addition with concentration dependently. Preincubation of enzyme source with $30\;{\mu}M$ of copper ion, which concentration marked increased the xanthine oxidase activity, unchanged the enzyme activity and type conversion compare to control in vitro system. It was also observed that copper induced xanthine oxidase activity and the enzyme type conversion was protected by dithiothreitol and penicillamine. These results indicate that the increment of the type conversion of xanthine oxidase necessarilly need the presence of copper ion in enzyme assay system.

  • PDF

Surface Modification of Silica Spheres for Copper Removal

  • Kim, Byoung-Ju;Park, Eun-Hye;Kang, Kwang-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.317-320
    • /
    • 2016
  • Efficient copper removal from water was achieved by using surface modified silica spheres with 3-mercaptopropyltrimethoxysilane (MPTMS) using base catalyst. The surface modification of silica spheres was performed by hydrolysis and condensation reactions of the MPTMS. The characteristic infrared absorption peaks at 2929, 1454, and 1343 cm−1 represent the −CH2 stretching vibration, asymmetric deformation, and deformation, respectively. The absorption peaks at 2580 and 693 cm−1 corresponding the −SH stretching vibration and the C-S stretching vibration indicate the incorporation of MPTMS to the surface of silica spheres. Field emission scanning electron microscope (FESEM) image of the surface modified silica sphere (SMSS) shows nano-particles of MPTMS on the surface of silica spheres. High concentration of copper solution (1000 ppm) was used to test the copper removal efficiency and uptake capacity. The FESEM image of SMSS treated with the copper solution shows large number of copper lumps on the surface of SMSS. The copper concentration drastically decreased with increasing the amount of SMSS. The residual copper concentrations were analyzed using inductively coupled plasma mass spectrometer. The copper removal efficiency and uptake capacity with 1000 ppm of copper solution were 99.99 % and 125 mg/g, respectively.

A Study on Abnormal Expansion of Fe-Cu Sintered Alloy (Fe-Cu계 소결합금의 이상팽창에 관한 연구 (I))

  • Song Young-Jun;Kim Youn-Che
    • Journal of Korean Powder Metallurgy Institute
    • /
    • v.11 no.5
    • /
    • pp.383-390
    • /
    • 2004
  • In order to investigate behavior of abnormal expansion of the iron-copper compacts, we compared the dilatometric curves of the compacts which mixed the copper powder to the iron powder with those of compacts which mixed the copper powder to the iron-copper alloy powder. The dilatometric curves were obtained below the sintering conditions, which heated up to 115$0^{\circ}C$ by a heating rate of 1$0^{\circ}C$/min, held for 60min at 115$0^{\circ}C$ and cooled down at a rate of 2$0^{\circ}C$/min to room temperature. The dilatometric curves of the compacts showed the different expansion behavior at temperatures above the copper melting point in spite of same chemical composition. All of the compacts of former case showed large expansion, but all of the compacts in latter case showed large contraction. The microstructures of sintered compacts also showed the different progress in alloying of the copper into the iron powder. Namely we could observe the segregation at alloy part of copper into iron powder in case of the sintered compacts, which mixed the copper powder to the iron powder, but could not observe the segregation in compacts which mixed the copper powder to the iron-copper alloy powder. But the penetration of liquid copper into the interstices between solid particles was occurred at both cases. Therefore, the showing of the different dimensional changes in the compacts in spite of same chemical composition is due to more the alloying of copper into iron powder than the penetration of liquid copper into the interstices between solid particles.

Preparation and Characterization of Copper Oxychloride from Acidic Copper Chloride Etchant (PCB 산업에서 배출되는 산성 염화동 폐액으로부터 Copper Oxychloride의 제조 및 특성분석)

  • 김영희;김수룡;정상진;이윤주;어영선
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2003
  • Copper oxychloride used as an agricultural fungicide has been recovered from copper-containing waste etchant by the neutralization with alkali hydroxides. Large amount of copper-containing waste etchant is generated from Printed Circuit Board industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the waste is important. Recycling process of copper oxychloride from the waste etchant is discovered through the our study. In the range of reaction temp. 2$0^{\circ}C$-4$0^{\circ}C$, pH 5-7, pure copper oxychloride was able to prepare and the yield of copper oxychloride was higher than 95%. Physical properties of the sample have been characterized using SEM, XRD, TGA, ICP and Atomic absorption spectroscopy.