• 제목/요약/키워드: Copolymerization

검색결과 381건 처리시간 0.025초

Functionalization of polyethylene by graft copolymerization for separation processes

  • Kaur, Inderjeet;Gupta, Nitika;Kumari, Vandna
    • Advances in materials Research
    • /
    • 제2권1호
    • /
    • pp.15-36
    • /
    • 2013
  • Incorporation of polar functional moieties into polyethylene (PE) film has been achieved by graft copolymerization of polar monomers such as methacrylic acid (MAAc) and acrylamide (AAm) on to PE film, preirradiated with ${\gamma}$-rays from $^{60}Co$ source, using benzoyl peroxide (BPO) as initiator in aqueous medium. Percentage of grafting of MAAc and AAm was determined as a function of irradiation dose, monomer and initiator concentration, temperature, reaction time and amount of water. Maximum percentage of grafting of MAAc (1453%) and AAm (21.28%) was obtained at [MAAc] = $235.3{\times}10^{-2}$ mol/L, [AAm] = $23.4{\times}10^{-2}$ mol/L, [BPO] = $5.5{\times}10^{-2}$ mol/L and $16.5{\times}10^{-2}$ mol/L at $80^{\circ}C$, $90^{\circ}C$ in 180 min and 90 min respectively. The grafted PE films were characterized by FTIR, Thermogravimetric analysis (TGA) Scanning Electron Micrography (SEM) and X-ray diffraction methods. Some selective properties of grafted films such as swelling behavior, ion and metal uptake have been carried out. The biodegradation studies of the grafted PE films have also been investigated. The grafted films developed superior swelling behavior with maximum swelling (480%) in water as compared to pristine PE (13.55%), better thermal stability and ion and metal uptake studies showed promising results that can be effectively used for desalination of brackish water and separation of metals from the industrial effluents.

불화계 양친매성 폴리아크릴아마이드의 합성과 용액거동 (Synthesis and Solution Properties of Fluorinated Amphiphilic Polyacrylamide)

  • Zhao, Fangyuan;Du, Kai;Yi, Zhuo;Du, Chao;Fang, Zhao;Mao, Bingquan
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.403-411
    • /
    • 2015
  • A series of hydrophobically associating fluorinated amphiphilic polyacrylamide copolymers with remarkably high heat resistance and salt tolerance were synthesized by free radical micellar copolymerization, using acrylamide (AM) and sodium 2-acrylamido-tetradecane sulfonate ($AMC_{14}S$) as amphiphilic monomers, and 2-(perfluorooctyl) ethyl acrylate (PFHEA) as hydrophobic monomer. The structure of the terpolymer was characterized by FTIR, $^1H$ NMR and $^{19}F$ NMR. The solution properties of the terpolymers were investigated in details, and the results showed that the terpolymer solution had strong intermolecular hydrophobic association as the concentration exceeded the critical association concentration 1.5 g/L. The terpolymer solution possessed high surface activity, viscoelasticity, excellent heat resistance, salt tolerance and shearing resistance. The viscosity retention rate of copolymer solution was as high as 59.9% under the condition of fresh wastewater, $85^{\circ}C$ and a 60-days aging test.

캘콘기를 가지는 메타크릴레이트 고분자: 모노머 반응성비와 열적 광학적 성질 (Methacrylate Polymers Having Pendant Chalcone Moieties: Monomer Reactivity Ratios, Thermal and Optical Properties)

  • Barim, Gamze;Altun, Ozgul;Yayla, Mustafa Gokhun
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.13-22
    • /
    • 2015
  • A new methacrylate copolymer that includes chalcone as a side group, poly(4-methacryloyloxyphenyl-4'-methoxystyryl ketone-co-styrene) was synthesized by free radical copolymerization. FTIR and $^1H$ NMR spectroscopic techniques were used to characterize the homopolymers and copolymers. The copolymerizations were carried out to high conversions. Copolymer compositions were established by $^1H$ NMR spectra analysis. The monomer reactivity ratios for copolymer system were determined by the linearized Kelen $T{\ddot{u}}d{\ddot{o}}s$, and Extended Kelen $T{\ddot{u}}d{\ddot{o}}s$ methods and a non-linear least squares method. The molecular weights and polydispersity index of copolymers were measured by using the gel permeation chromatography (GPC). The effect of copolymer compositions on their thermal behavior were studied by differential scanning calorimetry and thermogravimetric analysis methods. The optical properties of the resulting copolymer were also investigated.

Synthesis and Properties of Poly[oxy(arylene)oxy(tetramethyldisilylene)]s via Melt Copolymerization Reaction

  • Jung, Eun Ae;Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1637-1642
    • /
    • 2013
  • We carried out the melt copolymerization reactions of 1,2-bis(diethylamino)tetramethyldisilane with several aryldiols such as, 4,4'-biphenol, 4,4'-isopropylidenediphenol, 9H-fluoren-9,9-dimethanol, and 4,4'-(9-fluorenylidene) bis(2-phenoxyethanol) to afford poly[oxy(arylene)oxy(tetramethyldisilylene)]s containing fluorescent aromatic chromophore groups in the polymer main chain: poly[oxy(4,4'-biphenylene)oxy(tetramethyldisilylene)], poly[oxy{(4,4'-isopropylidene) diphenylene}oxy(tetramethyldisilylene)], poly[oxy(9H-fluorene-9,9-dimethylene) oxy(tetramethyldisilylene)], and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxy(tetramethyldisilnylene)]. These prepared materials are soluble in common organic solvents such as $CHCl_3$ and THF. The obtained polymers were characterized by several spectroscopic methods such as $^1H$, $^{13}C$, and $^{29}Si$ NMR. Further, FTIR spectra of all the polymers exhibited characteristic Si-O stretching frequencies at 1014-1087 $cm^{-1}$. These polymeric materials in THF showed strong maximum absorption peaks at 268-281 nm, strong maximum excitation peaks at 263-291 nm, and strong maximum fluorescence emission bands at 314-362 nm due to the presence of tetramethyldisilylene and several arylene chromophores in the polymer main chain. TGA thermograms indicated that most of the polymers were stable up to $200^{\circ}C$ with a weight loss of 3-16% in nitrogen.

대기압 플라즈마 유도 그라프트 공중합으로 합성된 망상형 PU-g-PAAc 폼의 미생물 고정화능 향상 (Enhancement of Microbial Immobilization on the Surface of a Reticulated PU-g-PAAc Foam prepared through Graft Copolymerization induced by Atmosoheric Pressure Plasma Treatment)

  • 명성운;장영미;남기천;최호석;조대철
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.399-405
    • /
    • 2004
  • A reticulated PU-g-PAAc foam was modified through the surface treatment of PU foam by one atmospheric pressure plasma. The synthesized PU-g-PAAc foam was prepared for the purpose of immobilizing microbial organisms. We also attempted different plasma treatment methods including simple plasma treatment, plasma induced grafting and plasma induced grafting followed by plasma re-treatment. The effect of grafting on equilibrium water content (EWC) of PU forms was examined by swelling measurements. Adhesion test was performed to investigate the effect of different plasma treatment methods on the improvement of microbial immobilization. Two foams modified by plasma induced grafting and plasma re-treatment after grafting showed 2.7 and 3.0 fold higher microbial immobilization than unmodified one, respectively. Meanwhile, simple plasma treatment showed a little enhancement. FT-IR analysis of each sample verified the contribution of surface functional groups on the enhancement of microbial immobilization. SEM observation confirmed microbial adherence.