• Title/Summary/Keyword: Copernicus digital elevation model

Search Result 2, Processing Time 0.016 seconds

The Relative Height Error Analysis of Digital Elevation Model on South Korea to Determine the TargetVertical Accuracy of CAS500-4 (농림위성의 목표 수직기하 정확도 결정을 위한 남한 지역 수치표고모델 상대 오차 분석)

  • Baek, Won-Kyung;Yu, Jin-Woo;Yoon, Young-Woong;Jung, Hyung-Sup;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1043-1059
    • /
    • 2021
  • Forest and agricultural land are very important factors in the environmental ecosystem and securing food resources. Forest and agricultural land should be monitored regularly. CAS500-4 data are expected to be effectively used as a supplement of monitoring forest and agricultural land. Prior to the launch of the CAS500-4, the relative canopy height error analysis of the digital elevation model on South Korea was performed to determine the vertical target accuracy. Especially, by considering area of interest of the CAS500-4 (mountainous or agricultural area), it is conducted that vertical error analysis according to the slope and canopy. For Gongju, Jeju, and Samcheok, the average root mean squared differences were calculated compared to the drone LiDAR digitalsurface models, which were filmed in autumn and winter and the 5 m digital elevation model from the National Geographic Information Institute. As a result, the Shuttle radar topography mission digital elevation model showed a root mean squared differences of about 8.35, 8.19, and 7.49 m, respectively, while the Copernicus digital elevation model showed a root mean squared differences of about 5.65, 6.73, and 7.39 m, respectively. In addition, the root mean squared difference of shuttle radar topography mission digital elevation model and the Copernicus digital elevation model according to the slope angle were estimated on South Korea compared to the 5 m digital elevation model from the National Geographic Information Institute. At the slope angle of between 0° to 5°, root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model showed 3.62 and 2.52 m, respectively. On the other hands root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model respectively showed about 10.16 and 11.62 m at the slope angle of 35° or higher.

Estimation of the Amount of Mining and Waste Rocks at Musan Mine in North Korea Using a Historical Map and SRTM and Copernicus Global Digital Elevation Models (조선지형도와 SRTM 및 Copernicus 글로벌 수치지형모델을 이용한 북한 무산광산의 채광량 및 폐석 적치량 추정)

  • Yongjae Chu;Hoonyol Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.495-505
    • /
    • 2023
  • The Musan mine, situated in Musan County, Hamgyong Province, North Korea, stands as a prominent open-pit iron mine on the Korean Peninsula. This study focuses on estimating the mining and dumping activities within the Musan mine area by analyzing digital elevation model (DEM) changes. To calculate the long-term volume changes in the Musan mine, we digitized and converted the 1:200,000-scale third topographic map of the Joseon published in 1918 and compared with interferometric synthetic aperture radar (InSAR) DEMs, including Shuttle Radar Topography Mission DEM (2000) and Copernicus DEM (2011-2015). The findings reveal that over a century, Musan mine yielded around 1.37 billion tons of iron ore, while approximately 1.06 billion tons of waste rock were dumped. This study is particularly significant as it utilizes a historical topographic map predating the full-scale development of Musan mine to estimate a century's mining production and waste rock deposition. It is expected that this research provides valuable insights for future investigation of surface change of North Korea where the acquisition of in situ data remains challenging.