• Title/Summary/Keyword: Coordination chemistry

Search Result 364, Processing Time 0.029 seconds

The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS

  • Jang, Nak-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1790-1800
    • /
    • 2002
  • The DNA nucleosides(dA, dC, dG, dT)bound to gold nanoparticles (~13 nm) in aqueous solution has been studied as a probe by the SERS and their coordination structures have been proposed on the basis of them. According to UV-Visible absorption of gold nanoparticles after modifying with DNA nucleosides, the rates of absorption of dA, dC, and dG were much faster than that of dT as monitored by the aggregation kinetics at 700 nm. These data indicated that the nucleosides dA, dC, and dG had a higher affinity for the gold nanoparticles surface than nucleoside dT. As the result of SERS spectra, the binding modes of each of the nucleosides on gold nanoparticles have been assigned. A dA binds to gold nanoparticles via a N(7) nitrogen atom of the imidazole ring, which the C(6)-$NH_2$ group also participates in the coordination process. In the case of dC, it binds to the gold surface via a N(3) nitrogen atom of the pyrimidine ring with a partial contribution from the oxygen of C(2)=O group. A coordination of dG to the gold surfaces is also proposed. Although the dG has the two different nitrogens of a pyrimidine ring and the amino group, the N(1) nitrogen atom of a pyrimidine ring has a higher affinity after the hydrogen migrates to the amino group. Conversely, dT binds via the oxygen of the C(4)=O group of the pyrimidine ring. Accordingly, these data suggest that the nitrogen atom of the imidazole or the pyrimidine ring in the DNA nucleosides will bind more fast to the gold nanoparticles surfaces than the oxygen atom of the carbonyl group.

Synthesis and application of zirconium phosphate mesoporous coordination polymer for effective removal of Co(II) from aqueous solutions

  • Yang Zeng;Guoyuan Yuan;Tu Lan;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4013-4021
    • /
    • 2022
  • A kind of zirconium phosphate mesoporous coordination polymer Zr-EDTMPA was successfully synthesized and characterized using XRD, FTIR, TGA, EA, SEM-EDS, and N2 sorption-desorption measurements. The prepared Zr-EDTMPA was first employed for the removal of Co(II) from an aqueous solution, and the effects of pH, contact time, temperature, initial Co(II) concentration, reusability, and sorption mechanism were systematically investigated. The results showed that the Zr-EDTMPA is a zirconium phosphate complex formed by the coordination of EDTMPA to Zr in a molar ratio of 1:1. The sorption of Co(II) by Zr-EDTMPA was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. The Zr-EDTMPA was demonstrated to have excellent reusability and presented a high sorption capacity of 73.0 mg·g-1 for Co(II) at pH 8.0. The sorption mechanism was mainly attributed to the strong coordination between cobalt and the untapped hydroxyl functional groups on Zr-EDTMPA, which was confirmed by XPS spectra. Therefore, as a candidate sorbent with high sorption capacity and excellent reusability, Zr-EDTMPA has a great potential for the removal of Co(II) from aqueous solutions.

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Preparation and Structure of $CH_2CH_2OOCCHCH_2SnCl_3$

  • Jung Ok-Sang;Lee Young-A;Jeong, Jong Hwa;Sohn Youn Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.404-406
    • /
    • 1992
  • A new estertin, $CH_2CH_2OOCCHCH_2SnCl_3$, was prepared and its structure was determined by X-ray crystallography ($P2_12_12_1$; a = 9.439(l), b = 9.601(l), c = 10.779(I) $\AA$, Z = 4) and refined to R = 0.0356. The coordination geometry around the tin atom approximates to a trigonal bipyramid with the intramolecularly coordinated oxygen O(1), (Sn-O(1), $2.482(6){\AA})$ and Cl(2) occupying mutually trans positions (O(1)-Sn-Cl((2), $176.4(2)^{\circ}$).

Synthesis and Characterization of New Organotin (IV)-phenylenebisdithiocarbamate Complexes

  • Lee, Won-Ho;Jung, Ok-Sang;Sohn, Youn-Soo;Kim, Poong-Zag
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.421-425
    • /
    • 1986
  • New di- and triorganotin(IV) complexes of meta- and para-phenylenebisdithiocarbamate(m- and p-pbdtc) have been synthesized and characterized by means of chemical analysis, mass spectrometry, and IR spectroscopy. The reaction of the m-pbdtc ligand with diorganotin(IV) halides resulted in 1:1 products, $R_2Sn{\cdot}m$-pbdtc (R = Me, Cy, n-Bu) of dimeric nature whereas the p-pbdtc ligand led to an oligomeric or polymeric structure. The pbdtc ligands were also reacted with triorganotin(IV) halides to form monomeric complexes, $(R_3Sn)_2{\cdot}pbdtc.$ The tin coordination chemistry of these complexes were also discussed in terms of Sn-C and Sn-S bonding modes.

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

One-Dimensional Hydrogen-Bonded Infinite Chains Composed of a Nickel(II) Macrocyclic Complex and Organic Ligands

  • Choi, Ki-Young;Ryu, Hae-Il;Lee, Kyu-Chul;Lee, Han-Hyoung;Hong, Choon-Pyo;Kim, Jae-Hyun;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1150-1154
    • /
    • 2003
  • The reactions of [Ni(L)(H₂O)₂]Cl₂ (L = 2,5,9,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane) with terephtalate (tp) and 2,5-pyridinedicarboxylate (pdc) generate one-dimensional nickel(II) complexes, [Ni(L)(H₂O)₂](tp) · ₄H₂O (1) and [Ni(L)(H₂O)₂](pdc)·₄H₂O (2). The structures have been characterized by X-ray crystallography, magnetic susceptibility and spectroscopy. The crystal structures of 1 and 2 show a distorted octahedral coordination geometry around the Ni(II) ion, with secondary amines of the macrocycle and two water molecules at the trans position. Complexes 1 and 2 display the one-dimensional hydrogen-bonded infinite chains. The magnetic behavior of all compounds exhibits weak interchain antiferromagnetic interactions with J values of -1.09(3) for 1 and -1.14(2) cm-1 for 2.

Synthesis and Characterization of the Thermally Stable Ho(hfa)3(tme)

  • Kang, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1207-1210
    • /
    • 2004
  • Holmium $\beta$ -diketonate complexes, Ho(hfa)$_3$(tme), has been prepared and characterized by IR, TGA, MS, and single-crystal X-ray analyses. This complex is air- and moisture-stable and most importantly has good volatility and thermal stability. Holmium atom binds to nine oxygen atoms, contributed by six oxygen atoms of three hfa ligands and three oxygen atoms of the tme ligand. The coordination polyhedron of Ho can be described as a distorted tricapped trigonal prism. Crystal data for $Ho(hfa)_3(tme)$; orthorhombic $P2_12_12_1$, a = 15.415(4), b = 13.17(2), c = 17.291(3) $\AA$, V = 3496(1) ${\AA}^3$.

Copper(II), Nickel(II) and Palladium(II) Complexes of 2-Oximino-3-thiosemicarbazone-2,3-butanedione

  • Al-Kubaisi, Abdulla H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • A new tridentate ligand incorporating a monoxime and thiosemi-carbozone moieties has been synthesized. Its copper(II), nickel(II) and palladium(II) complexes have been prepared and characteirzed by physical and spectral methods. Elemental analyses and spectroscopic data of the metal complexes are consistent with the formation of a mononuclear copper(II) complex and binuclear complex with both nickel(II) and palladium(II). In the copper(II) complex the fourth coordination site is occupied by nitrate ion. In the binculear complexes the fourth coordination site is occupied by the deprotonated oxime oxygen of the ligand coordinated to the other metal.