• 제목/요약/키워드: Coordinated Voltage Control

검색결과 43건 처리시간 0.023초

ULTC의 협조제어 (Coordinated Control of the Under Load Tap Changer)

  • 이송근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권9호
    • /
    • pp.500-505
    • /
    • 2003
  • The target of the ULTC(Under Load Tap Changer) control purpose is to minimize the operation number of the tap of the ULTC doing the error voltage which is the difference between the measured bus voltage End the reference bus voltage of the receiving end becomes less than the tolerance limits. The existing ULTC control method controls each ULTC considering only its bus voltage of the receiving end. However, this method did not cons der the coordinated control of the ULTCs of the system. In this paper, I proposed a coordinated control of the ULTC in :he loop power system using the Jacobian matrix. To show the validity of the proposed method, I made simulations for three cases: no action of the ULTC, the control of the ULTC by the existing control method, and the control of the ULTC by the coordinated control among the ULTCs of the system. The simulation result shows that the proposed method has more improvement of the operation of the ULTC than other methods.

CVR을 위한 전압 계측 기반 전압 및 무효전력 협조제어 (Voltage Measurement-based coordinated Volt/VAR Control for Conservation Voltage Reduction)

  • 고석일;최준호;안선주;윤상윤
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1689-1696
    • /
    • 2017
  • In this paper, the voltage measurement-based coordinated Voltage/VAR control (VMCVVC) algorithm for conservation voltage reduction(CVR) is proposed. The proposed algorithm has the purpose of enhancing the CVR effect through coordinated control of the voltage control devices such as the distributed energy resources and the load tap changer(LTC) transformers. It calculates the references of the voltage control devices such that the bus voltages are maintained at as close to the lower operation limit as possible. For this purpose, firstly, the distribution system is divided into LTC transformer control zones through topological search. Secondly, the reactive power references of the reactive power control devices are determined such that the voltage profile of the section is flattened. Finally, the tap references of the LTC transformers are calculated to lower the voltage profile. The effectiveness of the proposed algorithm is demonstrated through case studies using IEEE test network.

전기 자동차 계통 연계 시 BESS의 협조제어를 이용한 전력품질 향상 대책 개발 (Development of Countermeasure for Improving the Power Quality using Coordinated Control of BESS on Electric Vehicle connected System)

  • 이순정;김상원;김준혁;김철환
    • 조명전기설비학회논문지
    • /
    • 제29권6호
    • /
    • pp.63-69
    • /
    • 2015
  • Energy Storage Systems (ESSs) are essential in the future power systems because they can improve power usage efficiency. In this paper, we propose the countermeasure for improving the power quality using coordinated control of BESS(Battery Energy Storage System) on EV connected system. To verify the performance of proposed scheme, we simulate on the actual power system of KEPCO and compare the results of voltage variation, frequency variation, and load factor with those of uncoordinated control. From the simulation results, we confirm that frequency and voltage deviation are significantly reduced with proposed coordinated control of BESS.

무효전력 보상여유를 고려한 SVC와 ULTC의 협조제어 (Coordinated Control of SVC and ULTC Considering Reactive Power Compensation Margin)

  • 문경섭;손광명;이태기;이송근;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.351-357
    • /
    • 1999
  • This paper proposes the coordinated control of SVC and UTLC at the distribution substation to get larger operating margin of SVC for the voltage stability control by reactive power compensation. In the conventional method, ULTC doesn't respond to the variation of source voltage, so SVC has the entire responsibility for it. It could cause the lack of operating margin of SVC in some condition. It, however, is important to secure an operating margin for the dynamic stability control in emergancy. This paper proposes the coordinated control method that SVC controls the supply voltage and ULTC respond to the SVC compensation valve based on the relation between SVC compensation and ULTC tap position. The numerical simulation verifies that the proposed system could increase the operating margin of SVC compared with the conventional system.

  • PDF

동적전압안정도를 고려한 SVC와 ULTC의 협조제어 (Coordinated Control of SVC and ULTC Considering Dynamic Voltage Stability)

  • 문경섭;박영언;이송근;박종근;손광명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1097-1099
    • /
    • 1997
  • The implementation of Static Var Compensator(SVC) provides opportunites to maintain voltage profile and improve voltage stability in large scale power system. Under Load Tap Changing(ULTC) transformer has been used to control the voltage. It is necessary that Coordinated control of SVC and ULTC for the better performance. This paper shows that the characteristic of Voltage control using SVC or ULTC and the condition of the coordinated control considering dynamic voltage stability.

  • PDF

새로운 ULTC 제어모델을 이용한 ULTC와 SVC의 협조제어 (Coordinated Control of ULTC and SVC Using a new control model of ULTC)

  • 이송근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.230-232
    • /
    • 2000
  • To improve the voltage profile of the load bus, it is important that the coordinated controls among the reactive power compensators at the distribution substation. However, the conventional control scheme of the Under Load Tap Changer (ULTC) is not proper for coordinate control with Static Var Compensator (SVC). This paper proposes a new control model for ULTC and a new coordinated control scheme between ULTC and SVC. The numerical simulation verifies that the proposed system could improve the voltage profile on the load bus and could decrease the number of ULTC tap operation.

  • PDF

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.

수도권 순동 무효전력 확보를 위한 FACTS 협조제어 시스템 온라인 설치 (Installation of MFC(Multiple FACTS Coordinated control) On-line System for the Spinning Reserve of a Reactive Power in Metropolitan Area)

  • 장병훈;문승필;하용구;전웅재
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2131-2134
    • /
    • 2010
  • In this paper, the on-line system schemes for coordinated control system of multiple FACTS were presented to enhance the voltage stability around the metropolitan areas. In order to coordinated control system of FACTS devices, MFC on-line system calculates the optimal set point(Vref, Qrev) of FACTS devices using the coordinated control algorithm with real time network data which is transferred from SCADA/EMS system. If the system is unstable after contingencies, the new operation set-point of FACTS would be determined using bus sensitivity from tangent vector at voltage instability point. Otherwise, we would determine the new operation set-point of FACTS for considering economical operation, like as active power loss minimization using Optimal Power Flow algorithm. As the test, MFC(Multiple FACTS Coordinated control) on-line system will be installed in Korea power system.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

커패시터의 최적 스케줄링을 고려한 ULTC의 협조 제어 (Coordinated Control of ULTC Considering the Optimal Operation Schedule of Capacitors)

  • 박종영;박종근;남순열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권6호
    • /
    • pp.242-248
    • /
    • 2006
  • This paper proposes a coordinated control method for under-load tap changers (ULTCs) with shunt capacitors to reduce the operation numbers of both devices. The proposed method consists of two stages. In the first stage, the dispatch schedule is determined using a genetic algorithm with forecasted loads to reduce the power loss and to improve the voltage profile during a day. In the second stage, each capacitor operates according to this dispatch schedule and the ULTCs are controlled in real time with the modified reference voltages considering the dispatch schedule of the capacitors. The performance of the method is evaluated for the modified IEEE 14-bus system. Simulation results show that the proposed method performs better than a conventional control method.