• Title/Summary/Keyword: Coordinate Recognition

Search Result 171, Processing Time 0.027 seconds

Distinctive point extraction and recognition algorithm for counters for the various kinds of bank notes

  • Joe, Yong-won;An, Eung-seop;Lee, Jae-kang;Kim, Il-hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.90.1-90
    • /
    • 2002
  • Counters for the various kinds of bank notes require high-speed distinctive point extraction and recognition for notes. In this paper we propose a new point extraction and recognition algorithm for bank notes. For distinctive point extraction we use a coordinate data extraction method from specific parts of a bank note representing the same color. The recognition algorithm uses a back-propagation neural network that has coordinate data input. The proposed algorithm is designed to minimize recognition time.

  • PDF

The Study of Mobile Robot Self-displacement Recognition Using Stereo Vision (스테레오 비젼을 이용한 이동로봇의 자기-이동변위인식 시스템에 관한 연구)

  • 심성준;고덕현;김규로;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.934-937
    • /
    • 2003
  • In this paper, authors use a stereo vision system based on the visual model of human and establish inexpensive method that recognizes moving distance using characteristic points around the robot. With the stereovision. the changes of the coordinate values of the characteristic points that are fixed around the robot are measured. Self-displacement and self-localization recognition system is proposed from coordination reconstruction with those changes. To evaluate the proposed system, several characteristic points that is made with a LED around the robot and two cheap USB PC cameras are used. The mobile robot measures the coordinate value of each characteristic point at its initial position. After moving, the robot measures the coordinate values of the characteristic points those are set at the initial position. The mobile robot compares the changes of these several coordinate values and converts transformation matrix from these coordinate changes. As a matrix of the amount and the direction of moving displacement of the mobile robot, the obtained transformation matrix represents self-displacement and self-localization by the environment.

  • PDF

Face Recognition Based on Polar Coordinate Transform (극좌표계 변환에 기반한 얼굴 인식 방법)

  • Oh, Jae-Hyun;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • In this paper, we propose a novel method for face recognition which uses polar coordinate instead of conventional cartesian coordinate. Among the central area of a face, we select a point as a pole and make a polar image of a face by evenly sampling pixels in each direction of 360 degrees around the pole. By applying conventional feature extraction methods to the polar image, the recognition rates are improved. The polar coordinate delineates near-pole area more vividly than the area far from the pole. In a face, important regions such as eyes, nose and mouth are concentrated on the central part of a face. Therefore, the polar coordinate of a face image can achieve more vivid representation of important facial regions compared to the conventional cartesian coordinate. The proposed polar coordinate transform was applied to Yale and FRGC databases and LDA and NLDA were used to extract features afterwards. The experimental results show that the proposed method performs better than the conventional cartesian images.

Real-Time Hand Gesture Recognition Based on Deep Learning (딥러닝 기반 실시간 손 제스처 인식)

  • Kim, Gyu-Min;Baek, Joong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.424-431
    • /
    • 2019
  • In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

A algorithm on robot tracking about complex curve with visual sensor (시각센서를 이용한 로보트의 복잡한 곡선추적에 관한 알고리즘)

  • 권태상;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.109-114
    • /
    • 1987
  • In this thesis, we work on the curve recognition with real time processing and the Robot tracking method on recognized curve. Image information of segment curve is supplied to computer to run to a Robot so that it is a feedback system. Image coordinate frame to world coordinate transformation represents in this paper and curve matching algorithm subscribes by two method, first transformation matching algorithm, second image coordinate matching algorithm. Also Robot running time to computer image processing time relationships finally includes.

  • PDF

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.

8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information (좌표 정보를 이용한 손동작 직선 8 방향 인식 알고리즘)

  • SODGEREL, BYAMBASUREN;Kim, Yong-Ki;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.259-267
    • /
    • 2015
  • In this paper, we proposed the straight line determination method and the algorithm for 8 directions determination of straight line using the coordinate information and the property of trigonometric function. We conduct an experiment that is 8 hand gestures are carried out 100 times each, a total of 800 times. And the accuracy for the 8 derection determination algorithm is showed the diagonal direction to the left upper side shows the highest accuracy as 92%, and the direction to the left side, the diagonal direction to the right upper side and the diagonal direction to the right bottom side show the lowest accuracy as 82%. This method with coordinate information through image processing than the existing recognizer and the recognition through learning process is possible using a hand gesture recognition gesture.

A Study on Iris Recognition by Iris Feature Extraction from Polar Coordinate Circular Iris Region (극 좌표계 원형 홍채영상에서의 특징 검출에 의한 홍채인식 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.48-60
    • /
    • 2007
  • In previous researches for iris feature extraction, they transform a original iris image into rectangular one by stretching and interpolation, which causes the distortion of iris patterns. Consequently, it reduce iris recognition accuracy. So we are propose the method that extracts iris feature by using polar coordinates without distortion of iris patterns. Our proposed method has three strengths compared with previous researches. First, we extract iris feature directly from polar coordinate circular iris image. Though it requires a little more processing time, there is no degradation of accuracy for iris recognition and we compares the recognition performance of polar coordinate to rectangular type using by Hamming Distance, Cosine Distance and Euclidean Distance. Second, in general, the center position of pupil is different from that of iris due to camera angle, head position and gaze direction of user. So, we propose the method of iris feature detection based on polar coordinate circular iris region, which uses pupil and iris position and radius at the same time. Third, we overcome override point from iris patterns by using polar coordinates circular method. each overlapped point would be extracted from the same position of iris region. To overcome such problem, we modify Gabor filter's size and frequency on first track in order to consider low frequency iris patterns caused by overlapped points. Experimental results showed that EER is 0.29%, d' is 5,9 and EER is 0.16%, d' is 6,4 in case of using conventional rectangular image and proposed method, respectively.