• Title/Summary/Keyword: Coordinate Extraction

Search Result 126, Processing Time 0.044 seconds

Direction Information and Singular Point Extraction for Orthogonal Coordinate Creation (직교 좌표 생성을 위한 방향성 및 특이점 추출)

  • Chang, Ji-Young;Sung, Yeun-Cheol;Kim, Seung-Hee;Kim, Sung-Nak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.703-706
    • /
    • 2003
  • 이 논문은 입력 지문 영상에 대하여 블록 이진화와 병렬 세선화를 거친 이미지에 4개의 각기 다른 방향 성분 요소를 이용하여 각 블록에 대한 대표 방향 성분들을 추출하여 방향 성분 이미지를 얻었다. 추출된 대표 방향성분 이미지에 정의된 방향성 패턴을 적용시켜 일치되는 블록에 대하여 1차와 2차 중심점으로 추출하였다. 이렇게 추출된 1차와 2차 중심점을 이용하여 직교좌표를 생성하였다. 직교좌표는 지문영상을 처리하여 인식 및 인증시스템에서 유용하게 쓰일 수 있을 것이다.

  • PDF

The Area Extraction of Car-Licence Plates using U Component of LUV Color Coordinate System (LUV 칼라 좌표계의 U성분을 이용한 차량 번호판 영역 추출)

  • 정송균;김성준;김정엽;현기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.641-645
    • /
    • 2003
  • 본 논문은 일반적으로 차량의 번호판이 차종에 따라 녹색계통과 노란색계통 등 일정한 색상을 가지고 있다는 특징을 이용하여, 복합 칼라 좌표계의 성분을 결합한 차량 번호판 영역 추출에 대한 방법을 제안하였다. LUV와 HSI 및 YIQ 칼라 좌표계에서 번호판 영역을 검출하기 위해 사용한 색상은 U, H, Q영역이고 이진화 작업을 위한 임계치 조정의 효율성을 높이기 위해 각 영역의 평균 자기 값을 기준이 되는 값으로 보정하는 방법을 사용하였다. 처리과정의 효율성을 높이기 위해 번호판 후보 영역을 선정하여 번호판 크기의 마스크영역을 수직, 수평 라인으로 검색하여 추출하는 방법을 사용하였다. 실험 결과 H와 Q성분으로만 실험대상에 대하여 결합한 경우는 72.58%의 추출률을 보인 반면, 제안한 방법인 U와 H 및 Q성분의 결합에 의한 경우는 100%의 추출률을 보였다.

  • PDF

A Study on Coordinate Extraction and Ball Stroke Posture Analysis Using 6-Axis Gyro Sensor (6 축 자이로 센서를 활용한 좌표 추출 및 당구 스트로크 자세 분석에 관한 연구)

  • Kim, Jung-Hwan;Kim, Jin-Hyoung;Jung, Yun-Ho;Cho, Hyung-Joon;Kim, Woongsup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.346-349
    • /
    • 2019
  • 본 연구를 통해 당구를 처음 접하는 사람들이 혼자서도 올바른 스트로크 자세를 연습할 수 있도록 하기 위한 시스템을 설계하였다. 6 축 자이로 센서를 활용하여 가속도, 각속도 센서 값을 안드로이드와 BLE 통신으로 수집하고 그 값으로 스트로크의 속도와 각도, 방향을 계산하여 유사율을 나타낸다. 또한 터치센서에 스트로크 시에 타격감을 주기 위하여 모바일의 진동을 울려주며, 센서에 터치 된 값을 이용하여 사용자가 실제 타격한 당구공의 타점을 모바일에서 실시간으로 보여준다. 동시에 앞서 계산된 유사율을 그래프와 수치상으로 확인할 수 있다. 모범 자세와 비교한 피드백을 통하여 올바른 스트로크 자세를 익힐 수 있도록 도와준다.

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

Online Face Pose Estimation based on A Planar Homography Between A User's Face and Its Image (사용자의 얼굴과 카메라 영상 간의 호모그래피를 이용한 실시간 얼굴 움직임 추정)

  • Koo, Deo-Olla;Lee, Seok-Han;Doo, Kyung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.25-33
    • /
    • 2010
  • In this paper, we propose a simple and efficient algorithm for head pose estimation using a single camera. First, four subimages are obtained from the camera image for face feature extraction. These subimages are used as feature templates. The templates are then tracked by Kalman filtering, and camera projective matrix is computed by the projective mapping between the templates and their coordinate in the 3D coordinate system. And the user's face pose is estimated from the projective mapping between the user's face and image plane. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences.

Differential CORDIC-based High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor (TOF 센서용 3차원 깊이 영상 추출을 위한 차동 CORDIC 기반 고속 위상 연산기)

  • Koo, Jung-Youn;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.643-650
    • /
    • 2014
  • A hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is described. The designed phase calculator adopts redundant binary number systems and a pipelined architecture to improve throughput and speed. It performs arctangent operation using vectoring mode of DCORDIC(Differential COordinate Rotation DIgital Computer) algorithm. Fixed-point MATLAB simulations are carried out to determine the optimal bit-widths and number of iteration. The phase calculator has ben verified by FPGA-in-the-loop verification using MATLAB/Simulink. A test chip has been fabricated using a TSMC $0.18-{\mu}m$ CMOS process, and test results show that the chip functions correctly. It has 82,000 gates and the estimated throughput is 400 MS/s at 400Mhz@1.8V.

Extraction of Object 3-Dimension Position Coordinates using CCD-Camera (CCD-Camera를 이용한 목적대상의 3차원 위치좌표 추출)

  • Kim, Moo-Hyun;Lee, Ji-Hyun;Kim, Young-Hee;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.245-249
    • /
    • 2010
  • In the stereo vision system, information about an object could be gained by searching through images. Edges which are based on the information about an object are used to find the position of the object and send a message of its position coordinate to a unmanned crain. This thesis proposes an algorithm to find the center point of the object's surface which is connected to the unmanned crain's arm, and to recognize the shape of the object by using two CCD cameras. At first, getting information about the edges, and distinguishing each edge's characteristics depend on user's option, and then find the location information by a set of positions that are proposed. This thesis is expected to be devoted to the development of an automation system of unmanned moving equipment.

  • PDF

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

A Study on Decision Making of Cadastral Surveying Results using Drone Photogrammetry (드론항공사진측량을 활용한 지적측량 성과결정에 관한 연구)

  • Lim, Seong-Ha;Kim, Ho-Jong;Lee, Don-Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.79-95
    • /
    • 2021
  • This study evaluates the applicability of determining cadastral surveying results using drone photogrammetry during the phase of determining cadastral surveying results, which is the most important stage of cadastral surveying, but known to be hardly objective and highly probable in causing a subjective misjudgment or mistake made by a surveyor. In the experiment to analyze the accuracy of boundary point extraction from drone photogrammetry results, by comparing the coordinate area of 22 parcels extracted from 2D and 3D images with the coordinate area measured from ground survey, the difference could be quantified as RMSE of 1.44m2 for 2D and 0.32m2 for 3D images. In addition, experiments to evaluate the determination of cadastral surveying result based on drone photogrammetry survey showed the RMSE measure of 0.346m towards N direction and 0.296m towards Y direction in comparison to the existing surveying results through data investigation. Based on these experiments, it is judged that cadastral surveying result based on drone photogrammetry can be determined without needing to conduct a location survey with an accuracy of approximately 0.3m in the graphical area, which also leads to possibility of reducing individual errors if drones images are used along with ground survey by objectifying the process of cadastral surveying results.

A Basic Study on the Extraction of Dangerous Region for Safe Landing of self-Driving UAMs (자율주행 UAM의 안전착륙을 위한 위험영역 추출에 관한 기초 연구)

  • Chang min Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.24-31
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility, UAM), which can take off and land vertically in the operation of urban air transportation systems, has been increasing. Therefore, various start-up companies are developing related technologies as eco-friendly future transportation with advanced technology. However, studies on ways to increase safety in the operation of UAM are still insignificant. In particular, efforts are more urgent to improve the safety of risks generated in the process of attempting to land in the city center by UAM equipped with autonomous driving. Accordingly, this study proposes a plan to safely land by avoiding dangerous region that interfere when autonomous UAM attempts to land in the city center. To this end, first, the latitude and longitude coordinate values of dangerous objects observed by the sense of the UAM are calculated. Based on this, we proposed to convert the coordinates of the distorted planar image from the 3D image to latitude and longitude and then use the calculated latitude and longitude to compare the pre-learned feature descriptor with the HOG (Histogram of Oriented Gradients, HOG) feature descriptor to extract the dangerous Region. Although the dangerous region could not be completely extracted, generally satisfactory results were obtained. Accordingly, the proposed research method reduces the enormous cost of selecting a take-off and landing site for UAM equipped with autonomous driving technology and contribute to basic measures to reduce risk increase safety when attempting to land in complex environments such as urban areas.

  • PDF