• Title/Summary/Keyword: Coordinate Determination

Search Result 91, Processing Time 0.021 seconds

A Study on Astro-Geodetic Geoid in Korea (우리나라 천문지오이드에 관한 연구)

  • 백은기;목찬상;이종혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 1985
  • In the three dimensional Cartesian Coordinate System such as the satellite geodesy the relationship of the geoid and the reference ellipsoid must be known. Therefore, the determination of geoidal heights is regarded as one of the most important problem in geodesy. This paper deals with determination of astro-geodetic geoid by the spherical surface polynomials interpolation method. The data that astronomical deflection of the vertical was published by National Geography Institute is applied. The map of geoidal heights is drawn out. This shows that Tokyo Datum have influenced on Korea.

  • PDF

Determination the Opsition for Mobile Robot using a Neural Network (신경회로망을 이용한 이동로봇의 위치결정)

  • 이효진;이기성;곽한택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.219-222
    • /
    • 1996
  • During the navigation of mobile robot, one of the essential task is to determination the absolute location of mobile robot. In this paper, we proposed a method to determine the position of the camera from a landmark through the visual image of a quadrangle typed landmark using neural network. In determining the position of the camera on the world coordinate, there is difference between real value and calculated value because of uncertainty in pixels, incorrect camera calibration and lens distortion etc. This paper describes the solution of the above problem using BPN(Back Propagation Network). The experimental results show the superiority of the proposed method in comparison to conventional method in the performance of determining camera position.

  • PDF

Determination and Visualization of Three-Dimensional Shape Based on Images (영상 기반 3차원 형상 추출 및 가시화)

  • Cho Jung-Ho;Song Moon-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.15-18
    • /
    • 2002
  • We propose an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  • PDF

A Basie Scheme about the Determination of Official Coordinates of Geodetic Control Points in Korea (우리나라 삼각점 실용성과 산정에 관한 연구)

  • 최재화;김세걸;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 1990
  • The main objectives of this study are to present the new geodetic coordinate system, reference ellipsoid, and the basic scheme about the determination of official coordinates of geodetic control points. Moreover, provisional official coordinates on the basis of precise geodetic survey (1st and 2nd order geodetic networks) are proposed.

  • PDF

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.

A Study on Coordinate Determination of Territorial Sea Base Point by GPS Surveying (GPS에 의한 영해기점의 위치결정)

  • Choi, Yun-Soo;Park, Byung-Uk;Hwang, Byung-Ho;Cho, Moon-Hyoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.53-59
    • /
    • 2002
  • Territorial sea baseline is a borderline, with the effectuation of the United Nations Convention on the Law of the Sea of 1982, for the related sea zone negotiations with neighboring countries. Its position must be determined to international standard like WGS84 coordinate system. In this study, GPS survey for territorial sea points was performed to determine territorial baseline around five islands in the yellow sea, and the results of them were compared with previous coordinates. Territorial sea point, outermost spot of a nation's realm, tend to be placed in end up low-tide elevations or precipice. Therefore traditional surveying methods are hard to take accurate observations, so that GPS survey is most effective. Through the study, the scientific and reasonable methods for GPS surveying procedure is presented. The results of coordinate comparison show that there are wide difference between the old and new coordinates, and it is necessary for the whole area of islands to calculate displacements by GPS surveying.

  • PDF

Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique (사진측량기법을 이용한 엑스선영상의 3차원 모형화)

  • Kim, Eui Myoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.277-285
    • /
    • 2008
  • X-ray images are wildly used in medical applications, and these can be more efficiently find scoliosis which is appearing during the growth of human skeleton than others. This research is focused on the calibration of X-ray image and three-dimensional coordinate determination of objects. Three-dimensional coordinate of objects taken by X-ray are determined by two step procedure. Firstly, interior and exterior orientation parameters are determined by camera calibration using Primary Calibration Object (PCO) which has two sides with embedded radiopaque steel ball. Secondly, calibration cage coordinates which is composed of two acrylic sheets that are perpendicular to X-ray source are determined by the parameters. Three-dimensional coordinates of calibration cage determined by photogrammetric technique are compared with that of Coordinate Measuring Machine (CMM). Though the accuracy analysis, X direction which is parallel to X-ray source error values are relatively higher than those of Y and Z directions. But, the accuracies of Y and Z axis are approximately -3 mm to 3 mm. From the research results, it is considered that photogrammetric technique is applied to determine three-dimensional coordinates of patients or assist to make medical devices.