• Title/Summary/Keyword: Cooperative positioning

Search Result 31, Processing Time 0.023 seconds

Survey on Navigation Satellite System and Technologies (위성항법 시스템 및 기술 동향)

  • Lee, S.;Ryu, J.G.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.61-71
    • /
    • 2021
  • Navigation satellite systems (GPS, GLONASS etc.) provide three main services, i.e., positioning for location based services, navigation for multi-modal transportation services, and timing for communication and critical infrastructure services. They were started as military systems but were extended to civil service. Navigation satellite navigation system began with GPS in the USA and GLONASS in Russia at nearly the same time. Indian NavIC and Chines BDS announced their FOCs in 2016 and 2020, respectively and European Galileo and Japanese QZSS are catching up others. In these days, Navigation Satellite System, Positioning, Navigation, and Timing services are part of our daily life very closely. They are required for autonomous driving car, Unmanned vehicles like UAV, UGV, and UMV, 5G/6G telecommunications, world financial system, power system, survey, agriculture, and so on. The services among navigation satellite systems are very competitive and also cooperative one another. This article describes the status of these systems and evolution in the technical and service senses, which may be helpful for planning korea positioning system(KPS).

Efficient Localization in Wireless Sensor Networks (무선 센서 네트워크에서 효율적 측위 기법)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.159-173
    • /
    • 2009
  • Locations of positioned nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times. And this research verifies this technology is excellent in terms of performance, accuracy, and scalability through simulation.

  • PDF

Vision-Based High Accuracy Vehicle Positioning Technology (비전 기반 고정밀 차량 측위 기술)

  • Jo, Sang-Il;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1950-1958
    • /
    • 2016
  • Today, technique for precisely positioning vehicles is very important in C-ITS(Cooperative Intelligent Transport System), Self-Driving Car and other information technology relating to transportation. Though the most popular technology for vehicle positioning is the GPS, its accuracy is not reliable because of large delay caused by multipath effect, which is very bad for realtime traffic application. Therefore, in this paper, we proposed the Vision-Based High Accuracy Vehicle Positioning Technology. At the first step of proposed algorithm, the ROI is set up for road area and the vehicles detection. Then, center and four corners points of found vehicles on the road are determined. Lastly, these points are converted into aerial view map using homography matrix. By analyzing performance of algorithm, we find out that this technique has high accuracy with average error of result is less than about 20cm and the maximum value is not exceed 44.72cm. In addition, it is confirmed that the process of this algorithm is fast enough for real-time positioning at the $22-25_{FPS}$.

A Simple Cooperative Transmission Protocol for Energy-Efficient Broadcasting Over Multi-Hop Wireless Networks

  • Kailas, Aravind;Thanayankizil, Lakshmi;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • This paper analyzes a broadcasting technique for wireless multi-hop sensor networks that uses a form of cooperative diversity called opportunistic large arrays (OLAs). We propose a method for autonomous scheduling of the nodes, which limits the nodes that relay and saves as much as 32% of the transmit energy compared to other broadcast approaches, without requiring global positioning system (GPS), individual node addressing, or inter-node interaction. This energy-saving is a result of cross-layer interaction, in the sense that the medium access control (MAC) and routing functions are partially executed in the physical (PHY) layer. Our proposed method is called OLA with a transmission threshold (OLA-T), where a node compares its received power to a threshold to decide if it should forward. We also investigate OLA with variable threshold (OLA-VT), which optimizes the thresholds as a function of level. OLA-T and OLA-VT are compared with OLA broadcasting without a transmission threshold, each in their minimum energy configuration, using an analytical method under the orthogonal and continuum assumptions. The trade-off between the number of OLA levels (or hops) required to achieve successful network broadcast and transmission energy saved is investigated. The results based on the analytical assumptions are confirmed with Monte Carlo simulations.

Indoor positioning scheme using GPS equipped outdoor terminals (외부 GPS 모바일 단말기를 이용한 실내 위치 추적 기법)

  • Cho, Hyung-Min;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.6-8
    • /
    • 2010
  • 최근 들어 위치 기반 서비스(Location Based Service)는 치안, 인명 구조, 물류 추적, 길안내 등 다양한 분야로 적용 가능성 때문에 많은 관심을 받고 있는 기술이다. 스마트 폰과 같은 모바일 단말기의 보급이 가속화되면서 사용자는 위치 정보를 이용한 각종 서비스에 대한 요구가 늘어나고 관련 산업의 사업성이 폭발적으로 증가하고 있는 추세다. 실외 위치 추적 기법은 인공위성을 이용한 GPS(Global Positioning System) 기법이 시장을 거의 평정하여 이에 수렴해 가고 있는 상황이고 실제로 많은 상용 제품이 존재하고 있다. 하지만 실내에는 인공위성 신호가 직접 전해 지지 못하는 상황이기 때문에 이와 다른 기법이 존재하나 아직 상용화하기에 그 정확도와 기술력이 부족한 것이 현실이다. 본 논문에서는 건물 밖에 존재하는 GPS 기능이 탑재된 모바일 단말기를 이용하여 실내에 존재하는 모바일 단말기와 협력 통신(Cooperative Communication)하여 위치를 추적하는 기법을 제안한다. 최근 들어 GPS 장비의 단가 하락으로 이 기능을 가지고 있는 모바일 단말기가 증가하고 있는 추세이기 때문에 실내 위치 추적 시스템을 구축하기 위해 별도의 장비를 설치하지 않아도 된다는 것이 이 기법의 가장 큰 장점이다. 시뮬레이션의 결과를 통해 본 기법의 효용성을 확인해보았다.

  • PDF

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.

Vehicular Cooperative Navigation Based on H-SPAWN Using GNSS, Vision, and Radar Sensors (GNSS, 비전 및 레이더를 이용한 H-SPAWN 알고리즘 기반 자동차 협력 항법시스템)

  • Ko, Hyunwoo;Kong, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2252-2260
    • /
    • 2015
  • In this paper, we propose a vehicular cooperative navigation system using GNSS, vision sensor and radar sensor that are frequently used in mass-produced cars. The proposed cooperative vehicular navigation system is a variant of the Hybrid-Sum Product Algorithm over Wireless Network (H-SPAWN), where we use vision and radar sensors instead of radio ranging(i.e.,UWB). The performance is compared and analyzed with respect to the sensors, especially the position estimation error decreased about fifty percent when using radar compared to vision and radio ranging. In conclusion, the proposed system with these popular sensors can improve position accuracy compared to conventional cooperative navigation system(i.e.,H-SPAWN) and decrease implementation costs.

Infrastructure 2D Camera-based Real-time Vehicle-centered Estimation Method for Cooperative Driving Support (협력주행 지원을 위한 2D 인프라 카메라 기반의 실시간 차량 중심 추정 방법)

  • Ik-hyeon Jo;Goo-man Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.123-133
    • /
    • 2024
  • Existing autonomous driving technology has been developed based on sensors attached to the vehicles to detect the environment and formulate driving plans. On the other hand, it has limitations, such as performance degradation in specific situations like adverse weather conditions, backlighting, and obstruction-induced occlusion. To address these issues, cooperative autonomous driving technology, which extends the perception range of autonomous vehicles through the support of road infrastructure, has attracted attention. Nevertheless, the real-time analysis of the 3D centroids of objects, as required by international standards, is challenging using single-lens cameras. This paper proposes an approach to detect objects and estimate the centroid of vehicles using the fixed field of view of road infrastructure and pre-measured geometric information in real-time. The proposed method has been confirmed to effectively estimate the center point of objects using GPS positioning equipment, and it is expected to contribute to the proliferation and adoption of cooperative autonomous driving infrastructure technology, applicable to both vehicles and road infrastructure.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF