• Title/Summary/Keyword: Cooperative Vehicle Infrastructure System

Search Result 16, Processing Time 0.021 seconds

Analysis of Intelligent Vehicle Control Methods for CIM at Non-signalized Intersections (비 신호 교차로에서 CIM을 위한 지능형 차량 제어기법 분석)

  • Joo, Hyunjin;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • There are lots of literature about connected car system from industry and academia. The connected car is a smart car integrated with IT technology that is connected to people, vehicles and traffic management systems. It is important to V2I (vehicle to infrastructure) communication which is the connection between the vehicle and the infrastructure. CIM (cooperative intersection management) is a device to manage the communication between vehicle and infrastructure. In this paper, we analyze two intelligent vehicle control methods using CIM at non-signalized intersections. In the first method, a vehicle to pass through intersection needs to reserve a resource of intersection. In the second method, trajectory patterns on pre-planned vehicles are classified to pass through intersection. We analyze case studies of two methods to be implemented by DP(dynamic programming) and ACO(ant colony optimization) algorithms. The methods can be reasonably improved by placing importance on vehicles or controlling speeds of vehicles.

A Study on the Performance Evaluation of C-ARS(Cooperative Automated Roadway System) in Infrastructure to Vehicle (I2V) Communication Based Service Scenario (인프라-차량(I2V) 통신 기반 서비스 시나리오에 따른 자율협력주행 도로시스템 성능평가 방안 연구)

  • Bae, Myoung Hwan;Kwon, Oh Yong;Kim, Jung Min;Jeong, Hong Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.112-123
    • /
    • 2018
  • The C-ARS(Cooperative Automated Roadway System) refers to a road infrastructure system that links automated vehicles with road infrastructure and communicates with each other via V2X communication to support automated vehicles. The purpose of this study is to suggest a performance evaluation method of C-ARS service. This study exemplifies the 'Work zone information service' among I2V service that provide information to automated vehicles in road infrastructure. First, we define the requirements and service scope needed to check the use case analysis and service performance of the service, and propose an evaluation system for performance evaluation of these services. In addition, the evaluation system was used to verify the feasibility of evaluation through the field test of 'Work zone information service'.

Research of Vehicles Longitudinal Adaptive Control using V2I Situated Cognition based on LiDAR for Accident Prone Areas (LiDAR 기반 차량-인프라 연계 상황인지를 통한 사고다발지역에서의 차량 종방향 능동제어 시스템 연구)

  • Kim, Jae-Hwan;Lee, Je-Wook;Yoon, Bok-Joong;Park, Jae-Ung;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.453-464
    • /
    • 2012
  • This is a research of an adaptive longitudinal control system for situated cognition in wide range, traffic accidents reduction and safety driving environment by integrated system which graft a road infrastructure's information based on IT onto the intelligent vehicle combined automobile and IT technology. The road infrastructure installed by laser scanner in intersection, speed limited area and sharp curve area where is many risk of traffic accident. The road infra conducts objects recognition, segmentation, and tracking for determining dangerous situation and communicates real-time information by Ethernet with vehicle. Also, the data which transmitted from infrastructure supports safety driving by integrated with laser scanner's data on vehicle bumper.

Evaluation Environment based on V2X Communication for Commercial Vehicle Cooperative Autonomous Driving (상용차 자율협력주행 플랫폼 평가를 위한 V2X 기반 평가환경 개발)

  • Han-gyun Jung;Seong-keun Jin;Jae-min Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.450-455
    • /
    • 2021
  • In this paper, we introduce the contents of research on the establishment of an evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication. For the evaluation of the autonomous cooperative driving platform based on V2X communication, various standards, standards, and guidelines for test evaluation should be developed and provided to the test subject, along with the establishment of test beds such as roads and V2X infrastructure that can apply various driving scenarios. do. In addition, based on this, various reference equipment and test equipment for actual test and evaluation should be developed. In this paper, various technologies, standards, equipment, and construction infrastructure developed to construct the evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication are introduced.

Development and Evaluation of Road Safety Information Contents Using Commercial Vehicle Sensor Data : Based on Analyzing Traffic Simulation DATA (사업용차량 센서 자료를 이용한 도로안전정보 콘텐츠 개발 : 교통시뮬레이션 자료 분석을 중심으로)

  • Park, Subin;Oh, Cheol;Ko, Jieun;Yang, Choongheon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.74-88
    • /
    • 2020
  • A Cooperative Intelligent Transportation System (CITS) provides useful information on upcoming hazards in order to prevent vehicle collisions. In addition, the availability of individual vehicle travel information obtained from the CITS infrastructure allows us to identify the level of road safety in real time and based on analysis of the indicators representing the crash potential. This study proposes a methodology to derive road safety content, and presents evaluation results for its applicability in practice, based on simulation experiments. Both jerk and Stopping Distance Index (SDI) were adopted as safety indicators and were further applied to derive road section safety information. Microscopic simulation results with VISSIM show that 5% and 20% samples of jerk and SDI are sufficient to represent road safety characteristics for all vehicles. It is expected that the outcome of this study will be fundamental to developing a novel and valuable system to monitor the level of road safety in real time.

Reliability Verification of Secured V2X Communication for Cooperative Automated Driving (자율협력주행을 위한 V2X 보안통신의 신뢰성 검증)

  • Jung, Han-gyun;Lim, Ki-taeg;Shin, Dae-kyo;Yoon, Sang-hun;Jin, Seong-keun;Jang, Soo-hyun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.391-399
    • /
    • 2018
  • V2X communication is a technology in which a vehicle exchanges information with various entities such as other vehicles, infrastructure, networks, pedestrians, etc. through a wired or wireless network. Recently, V2X communication technology has been steadily developed and recently it has played an important role in autonomous cooperation driving technology combined with autonomous vehicle technology. Autonomous vehicles can utilize the external information received via V2X communication to extend the recognition range of existing sensors and to support more safe and natural autonomous driving. In order to operate these autonomous cooperative vehicles on public roads, the security and reliability of autonomous V2X communication should be verified in advance. In this paper, we present test scenarios and test procedures of secure V2X communication for cooperative automated driving and present verification results.

A Study on Autonomous Vehicle Lane Change Method Using Cooperative Maneuver (협조운용을 적용한 자율주행 차선변경에 관한 연구)

  • Chang, Kyung-Jin;Yoo, Song-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.139-146
    • /
    • 2021
  • Ahead of the commercialization of autonomous vehicles, it's application should be considered into the current transportation infrastructure. Under limited traffic circumstances, effective set of lane change rules alone could bring benefits to the autonomous driving system. In this study, a cooperative movement (local platooning) plan with limited vehicles associated as pocket driving, aiming at effective movement between vehicles in urban environment was proposed. Under congested roadway condition, the gaussian gap between vehicles was introduced to secure gap acceptance for safe lane change maneuver. Proposed lane change method showed 86.6% delay reduction along with traffic volume improvement. This result could be considered as a crucial factor in designing a next-generation roadway infrastructure with autonomous driving.

Performance Analysis for Relay System of Fixed-Path Vehicle (고정 경로 차량의 중계기화에 대한 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • In this paper, we proposed scheme that obtain diversity gain in the cooperative communication to mitigate, applied to the effects of fading in the vehicle communication. Relay used bus that can available in the city environment. In addition, we applied the double rayleigh fading environment so that can applied in real-environments. Therefore, proposed scheme through this paper applied to vehicle communication, user can acquire a high quality service and the operation efficiency of the network is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

Bus-only Lane and Traveling Vehicle's License Plate Number Recognition for Realizing V2I in C-ITS Environments (C-ITS 환경에서 V2I 실현을 위한 버스 전용 차선 및 주행 차량 번호판 인식)

  • Im, Changjae;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.87-104
    • /
    • 2015
  • Currently the IoT (Internet of Things) environments and related technologies are being developed rapidly through the networks for connecting many intelligent objects. The IoT is providing artificial intelligent services combined with context recognition based knowledge and communication methods between human and objects and objects to objects. With the help of IoT technology, many research works are being developed using the C-ITS (Cooperative Intelligent Transport System) which uses road infrastructure and traveling vehicles as traffic control infrastructures and resources for improving and increasing driver's convenience and safety through two way communication such as bus-only lane and license plate recognition and road accidents, works ahead reports, which are eventually for advancing traffic effectiveness. In this paper, a system for deciding whether the traveling vehicle is possible or not to drive on bus-only lane in highway is researched using the lane and number plate recognition on the road in C-ITS traffic infrastructure environments. The number plates of vehicles on the straight ahead and sides are identified after the location of bus-only lane is discovered through the lane recognition method. Research results and experimental outcomes are presented which are supposed to be used by traffic management infrastructure and controlling system in future.