• Title/Summary/Keyword: Cooperation of Engineering Processes

Search Result 214, Processing Time 0.027 seconds

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

Food 3D-printing Technology and Its Application in the Food Industry (식품 3D-프린팅 기술과 식품 산업적 활용)

  • Kim, Chong-Tai;Maeng, Jin-Soo;Shin, Weon-Son;Shim, In-Cheol;Oh, Seung-Il;Jo, Young-Hee;Kim, Jong-Hoon;Kim, Chul-Jin
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.12-21
    • /
    • 2017
  • Foods are becoming more customized and consumers demand food that provides great taste and appearance and that improves health. Food three-dimensional (3D)-printing technology has a great potential to manufacture food products with customized shape, texture, color, flavor, and even nutrition. Food materials for 3D-printing do not rely on the concentration of the manufacturing processes of a product in a single step, but it is associated with the design of food with textures and potentially enhanced nutritional value. The potential uses of food 3D-printing can be forecasted through the three following levels of industry: consumer-produced foods, small-scale food production, and industrial scale food production. Consumer-produced foods would be made in the kitchen, a traditional setting using a nontraditional tool. Small-scale food production would include shops, restaurants, bakeries, and other institutions which produce food for tens to thousands of individuals. Industrial scale production would be for the mass consumer market of hundreds of thousands of consumers. For this reason, food 3D-printing could make an impact on food for personalized nutrition, on-demand food fabrication, food processing technologies, and process design in food industry in the future. This article review on food materials for 3D-printing, rheology control of food, 3D-printing system for food fabrication, 3D-printing based on molecular cuisine, 3D-printing mobile platform for customized food, and future trends in the food market.

Influences of SNS word-of-mouth information on behavioral intention for air purifier purchase and reword-of-mouth (SNS 구전 정보의 특성이 공기청정기의 구매 의도와 구전 의도에 미치는 영향)

  • Nam, Jungwoo;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.109-124
    • /
    • 2020
  • The present study identified the determinants of the behavioral intention to purchase an air purifier. This work further examined the moderating effect of interactivity readiness on the relation between the purchase intention and the word-of-mouth (WOM) intention. Our conceptual model included a second-order construct of SNS WOM richness, consisting of three first-order constucts of SNS WOM relevancy, timeliness and sufficiency. Furthermore, SNS WOM usefulness and credibility were incorporated into the model to predict the purchase intention. A total of 312 respondents participated in the survey study. A series of scale refinement processes were performed and a structural equation model analysis was conducted to verify our research hypotheses. The results indicated that SNS WOM richness was found to be significantly predictive of both SNS WOM usefulness and credibility, which in turn, had significant impacts on purchase intention. In addition, results revealed that purchase intention had a significant and positive influence on WOM intention. However, results failed to verify the moderating effect of interactivity readiness on the influence of behavioral intention on WOM intention.

Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space (개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5164-5171
    • /
    • 2011
  • In fuzzy modeling for nonlinear process, typically using the given data, the fuzzy rules are formed by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is identified by selection of the input variables, the number of space division and membership functions and the consequent part of the fuzzy rule is identified by polynomial functions in the form of simplified and linear inference. In general, formation of fuzzy rules for nonlinear processes using the given data have the problem that the number of fuzzy rules exponentially increases. To solve this problem complex nonlinear process can be modeled by separately forming the fuzzy rules by means of fuzzy division of each input space. Therefore, this paper utilizes individual input space to generate fuzzy rules. The premise parameters of the fuzzy rules are identified by Min-Max method using the minimum and maximum values of input data set and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. And lastly, using the data which is widely used in nonlinear process we evaluate the performance and the system characteristics.

A Research on the Importance of Decision Making in Process of Promoting an Urban Regeneration Project -Focused on Cheong-ju City- (도시재생 사업추진과정에서의 의사결정기준 중요도 -청주시를 중심으로-)

  • Kim, Joonghun;Oh, Hyoungseok;Baik, Minseok;Hwang, Jaehoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.431-439
    • /
    • 2016
  • Urban regeneration projects involve various stakeholders, which result in decision making processes that require long periods of time and cause many conflicts. This study aims to identify important factors in decision making for promoting an urban regeneration project. The analysis results utilizing AHP are as follows: Firstly, the analysis results identify the main considerations in the process of promoting urban regeneration projects as residents' opinion(0.393), involvement of local government(0.231), opinions of related experts(0.206) and master plan(0.169). Secondly, the key drivers of stakeholders' qualitative decision making were found to include sustainability(0.325), economic feasibility(0.277), ease of project implementation(0.232) and equity(0.166). Lastly, meaningful differences in the relative importance of key aspects of decision making were identified when respondents were grouped according to being aware or not aware of the urban regeneration project, as well as living on or living off the project site. The results of this study can be used to implement successful urban regeneration projects in the future.

Object Segmentation for Detection of Moths in the Pheromone Trap Images (페로몬 트랩 영상에서 해충 검출을 위한 객체 분할)

  • Kim, Tae-Woo;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.157-163
    • /
    • 2017
  • The object segmentation approach has the merit of reducing the processing cost required to detect moths of interest, because it applies a moth detection algorithm to the segmented objects after segmenting the objects individually in the moth image. In this paper, an object segmentation method for moth detection in pheromone trap images is proposed. Our method consists of preprocessing, thresholding, morphological filtering, and object labeling processes. Thresholding in the process is a critical step significantly influencing the performance of object segmentation. The proposed method can threshold very elaborately by reflecting the local properties of the moth images. We performed thresholding using global and local versions of Ostu's method and, used the proposed method for the moth images of Carposina sasakii acquired on a pheromone trap placed in an orchard. It was demonstrated that the proposed method could reflect the properties of light and background on the moth images. Also, we performed object segmentation and moth classification for Carposina sasakii images, where the latter process used an SVM classifier with training and classification steps. In the experiments, the proposed method performed the detection of Carposina sasakii for 10 moth images and achieved an average detection rate of 95% of them. Therefore, it was shown that the proposed technique is an effective monitoring method of Carposina sasakii in an orchard.

A Study on the Welding Amount Estimation System combined with 3D CAD Tool (3차원 CAD 통합형 용접물량 산출 시스템에 관한 연구)

  • Ruy, Won-Sun;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3184-3190
    • /
    • 2013
  • These days, the great part of design processes in the field of ship or offshore manufacturing are planed and implemented using the customized CAD system for each ship-building companies. It means that all information for design and production could be extracted and reused at the useful other area cost considerable time and efforts. The representative example is the estimation of welding length and material amount which is demanded during the construction of ship or offshore structures. The proper estimation of welding material to be used and the usage of them at the stage of schedule planning is mostly important to achieve the seamless process of production and expect the costing in advance. This study is related to the calculation of welding length and needed material amount at the stage of design complete utilizing the CAD system. The calculated amount are classified according to welding position, stage, block, bevel and welding type. Moreover it is possible to predict the working time for welding operation and could be used efficiently for the cost management using the results of this research.

Analytical and experimental study on the quality improvement of 2 cavity injection-molded LCD frame (2 캐비티 LCD 사출품의 품질향상에 관한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Jang, Eun-Sil;Han, Chang-Woo;Son, Jae-Yong;Lee, Young-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3815-3821
    • /
    • 2012
  • The LCD frame is an important part which supports the BLU of medium/large sized TFT-LCD. To produce it efficiently, it is necessary to achieve the molding process improvement from 1 cavity to 2 cavity system. Because 2 cavity mold is compact and its hot-runner zone is broadened, it is difficult to control the temperature on the mold. In this study, injection molding analysis on the frame in 2 cavity process with FEA(Finite Element Analysis) software is carried out to estimate its quality. The calculated injection molding pressures and maximum deflection in 1 and 2 cavity processes are 41.13 MPa and 1.62 mm, 40.49 MPa and 1.66 mm respectively. The measured maximum flexure load and surface roughness of the left and right frame of 2 cavities are 209 N and 0.08 ${\mu}m$, 193 N and 0.10 ${\mu}m$ while those in 1 cavity are 140 N and 0.13 ${\mu}m$. Thermal image shows that the maximum standard deviation of the temperature on left and right side of 2 cavity mold is $1.23^{\circ}C$. The simulation and measurement results show that the quality of the frame in 2 cavity injection molding process as a whole is not worse than that of 1 cavity system. But maximum flexure loads of the frame in 2 cavity process are far greater than that in 1 cavity process.

A study on the comparative test of chemical and thermal properties of virgin and recycled PET products (버진 및 리사이클 PET 제품의 화학적·열적 특성 비교시험에 관한 연구)

  • Kim, Kyoung Pil;Seo, Kyung Jin;Park, Soo-Yong;Chung, Ildoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • As the interest and demand in the recycled yarn field has increased rapidly worldwide, domestic companies are also promoting research and development and business on recycled yarn. The chemical and thermal properties of four types of virgin and recycled PET samples from A and B company, which are the leading domestic companies in the recycled polyester yarn business, were confirmed through infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Virgin and recycled PET from two companies were compared. FT-IR spectroscopy revealed the typical spectra of PET for both companies and a different peak at 872 cm-1. DSC confirmed that the melting point and crystallization temperature of recycled PET were lower than those of virgin PET. These results indicate that small amounts of contaminants are an important parameter affecting the thermal properties of recycled PET. In the DSC results after seven repeats of the heating and cooling processes, all four samples showed that a lower melting point, crystallization temperature, and low heat flow intensity increased with increasing number of cycles. The results of melting and crystallization enthalpy also showed similar patterns.

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.