• Title/Summary/Keyword: Cooling water(CW)

Search Result 5, Processing Time 0.017 seconds

Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU (고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화)

  • Kim, Seon-Chang;Jeon, Dong-Soon;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

A Case Research of Application of Submarine Structure for Discharge in the Power Plants (발전소 해양 배수 구조물의 적용사례)

  • Park, See-Boum;Bae, Dong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1689-1692
    • /
    • 2008
  • In this research, these days extension of electric power station plant and new building plan is tending to more bigger size and much more cooling water for discharge, therefore submarine structure for discharge has needed various types and the large one. The domestic power plant was applied to once-through CW system structure that pipe line type, immersed PC-box culvert type and submarine headrace tunnel type of discharge structure. It is possible that the future structure type of submarine discharge is expected by a case research of application and plan.

  • PDF

Study on the Effect of Wake Control Devices on Ship Performance Components (반류제어장치의 선박성능요소에 미치는 영향에 대한 고찰)

  • Lee, Yeon-Seung;Choi, Young-Bok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.453-459
    • /
    • 2009
  • The DSME guide plate(GP) has been developed with the target to improve the cavitation and vibration performance when used with discharging cooling water around the outlet of LNG carrier. It was proven that it could as well be applied as a powerful wake control device on its own, even without discharging cooling water. However, it has to be taken into account that it inevitably results in speed loss. This study shows the possibility to design a GP which simultaneously improves both vibration and speed performance. The study intends to outline how to design the preliminary GP configurations from both the vibration and the speed performance points of view. Further, the study offers design guidance for the hull form and the propeller when adapting GP as a wake control device.

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.