• 제목/요약/키워드: Cooling tank

검색결과 224건 처리시간 0.024초

소규모 사이펀 차단기에 대한 실험적 연구 (Experimental investigation on small scale siphon breaker)

  • 지대윤;김성훈;이권영
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.1-8
    • /
    • 2018
  • 본 연구는 Siphon Breaker Simulation Program(SBSP)을 이용하여 소규모 사이펀 차단기 실험장치를 설계 및 제작하고, 실험 수행 후 그 결과를 이용하여 다양한 규모의 사이펀 차단기에 대한 SBSP의 적용 가능성을 평가하기 위해 진행되었다. 실험장치 설계를 위하여 C factor와 Chisholm B 계수, Undershooting Height(UH)에 대한 시뮬레이션 결과값을 SBSP로 도출하였다. 실험장치의 중요파트는 upper tank, lower tank, downcomer, Siphon Breaker Line(SBL) 등이며, upper tank는 넓이 $0.09-m^2$, 높이 0.65-m의 크기로 제작되었고, downcomer 높이는 1.6-m로 제작되었다. 실험결과 분석을 위하여 압력계, 차압계, 전자저울이 사용되어 압력과 차압, 유량에 대한 정보를 도출하였다. 실험에서 사용된 실험변수는 Loss Of Coolant Accident(LOCA) 크기와 SBL 크기이며, LOCA는 30-mm와 38-mm에 대해서, SBL은 6/16-inch와 8/16-inch에 대해서 실험이 진행되었다. 실험의 결과로 유량과 압력, 그리고 UH를 도출하였으며, 실험결과를 SBSP의 시뮬레이션 결과와 비교, 분석하였다. UH 측면에서 SBSP가 수조의 총 높이 대비 2.5 %의 오차로 실험결과를 잘 예측하는 것을 관찰하였다. 그러므로 SBSP를 이용한 다양한 규모의 사이펀 차단기 설계가 가능한 것을 확인하였다.

육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구 (Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling)

  • 황종덕;구학근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

MC 기법을 이용한 수소 탱크 충전 성능 향상에 관한 연구 (A Study on the Improvement of Hydrogen Tank Fueling Performance Using MC Methods)

  • 최지아;지상원;장지성
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.447-455
    • /
    • 2023
  • SAE J2601, hydrogen fueling protocols, proposes two charging methods. The first is the table-based fueling protocol, and the second is the MC formula-based fueling protocol. Among them, MC formula-based fueling protocol calculates and supplies the target pressure and pressure ramp rate (PRR) using the pre-cooling temperature of the hydrogen and the physical parameters of the tank in the vehicle. The coefficient of the MC formula for deriving MC varies depending on the physical parameters of the tank in the vehicle. However, most studies use the MC coefficient derived from SAE J2601 as it is, despite the difference in the physical parameters of the tank applied to the study and the tank used to derive the MC coefficient from SAE J2601. In this study, the MC coefficient was derived by applying the hydrogen tank currently used, and the difference with the fueling performance using the MC coefficient proposed in SAE J2601 was verified. In addition, the difference was confirmed by comparing and analyzing the fueling performance of the table-based method currently used in hydrogen fueling stations and the MC formula-based method using MC coefficient derived in this study.

수소 Joule-Thomson냉동기의 성능실험 (Performance test of Joule-Thomson cryocooler with $H_2$gas)

  • 백종훈;강병하;홍성제;장호명
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.457-463
    • /
    • 1999
  • The Joule-Thomson cryocooler with $H_2$gas has been developed. Cool-down characteristics and the cooling performance of a JT cryocooler have been investigated in detail. The JT cryocooler consists of JT expansion valve, heat exchanger, expansion chamber, compressed $H_2$gas storage tank, $LN_2$precooler, heater and a cryostat. The precooling process using both $GN_2$and $LN_2$was peformed to cool down the inside components of cryocooler under the maximum inversion temperature of $H_2$. The $H_2$expansion experiments have been peformed for 2-5MPa of H$_2$pressure to evaluate steady state temperatures of the cryocooler. It is found that the steady state temperatures are decreased as the H$_2$pressures are increased. The effects of cooling temperatures on the performance have been evaluated for various $H_2$and $N_2$pressures. It is seen that the cooling loads are increased, as the cooling temperature and operating pressure are increased.

  • PDF

빙해수조 공냉 시스템 변화에 따른 결빙 균질도 비교 전산해석 (Computational Analysis for Effects of Cooling System on Homogeneity of Ice Thickness and Temperature on Water Surface)

  • 이승수;김영민;이춘주
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.167-174
    • /
    • 2013
  • Model ice forming process in ice tank needs several steps of seeding, freezing, tempering. In those process, one of the most important factors to affect the accuracy of experiment is the homogeneity of the ice thickness and the temperature. This paper investigated a computational and statistical method to assess the uniformity of the model ice. In addition, the different configurations of freezing systems were considered to improve the uniformity. Qualitative assessment using streamlines from the cooling units was carried out by computational fluid dynamics (CFD) and the quantitative evaluations of the homogeneity were compared using the temperature distribution on the ice surface. In addition, multi species transport analysis is introduced to understand the circulation efficiency of cold air from the cooling units. As the results, optimized configurations were determined by adjusting the angles of vane in the cooling units.

태양열 흡수식 냉방 시스템의 동특성 연구 (A Study on the Dynamic Performance of a Solar Absorption Cooling System)

  • 백남춘;이진국;양윤섭;정시영
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.81-87
    • /
    • 1998
  • Solar energy has been experiencing renewed interest because of the recent economical crisis in Korea. Absorption cooling is one of the promising solar energy utilization technologies. In this study the dynamic performance of a solar driven absorption cooling machine(SDACM) was numerically investigated. The simulated machine is a commercially available water/LiBr single effect absorption chillers driven by hot water from solar collectors. The present study has been directed to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collector, a hot water storage tank, fan coil units, and the air-conditioned space. The operation of the system was simulated for 9 hours in varying operation conditions. The variation of temperature and concentration in the system components, and that of heat transfer rates in the system were obtained. It was also found that the room temperature was maintained near the desired value by controlling the mass flow rate of hot water.

  • PDF

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF

하나로 2차 냉각탑의 냉각팬 감속기의 진동분석 (Vibration Analysis of a Cooling Fan Gear Reducer of the Secondary Cooling Tower in HANARO)

  • 박용철
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.935-941
    • /
    • 2010
  • 하나로는 한국에 설치되어 있는 열출력 30MW의 개방 수조형 연구로 이다. 이는 발전로와 달리 원자로에서 발생하는 열을 이용하여 전기를 생산하는 것 대신에 원자로의 노심 온도를 유지하기 위하여 냉각탑을 통해 대기로 이 열을 냉각한다. 냉각탑 월간 점검 중에 냉각탑 4번의 냉각팬 감속기가 기준을 상회하는 고진동을 기록하였다. 본 연구의 목적은 고진동의 원인을 찾아 정상적으로 수리하기 위함이다. 연구 방법은 FFT 스펙트럼 기법을 적용하여 고진동의 원인을 분석하였다. 그 결과 고진동 주파수는 피니언 기어의 고유 진동수의 두 배인 354Hz이었다. 피니언 기어를 점검한 결과 이빨 표면이 깨져 있었다. 깨진 피니언 기어를 제거하고 새것으로 교체한 후에는 감속기는 정상적으로 작동하였다.

동시냉난방 히트펌프의 냉매 충전량과 운전모드 변화에 따른 성능특성에 관한 연구 (The Performance of a Simultaneous Heat and Cooling Heat Pump at Various Charging Conditions)

  • 송인식;최종민;주영주;정현준;강훈;김용찬
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.492-499
    • /
    • 2008
  • The cooling load in winter is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a multi-heat pump with 3-piping system was investigated as a function of refrigerant charge and its performance was analyzed in cooling mode, heating mode, and heat recovery mode. COP in the heating or cooling mode showed little dependence on refrigerant charge at overcharge conditions, while those were strongly dependent on refrigerant charge at undercharge conditions and outdoor inlet temperature. In the heat recovery mode, the performance of the system was very sensitive to charge amount at all conditions. Optimum charge amount in the heat recovery mode was 14% lower than that in the cooling mode at the standard condition because the refrigerant only passed the indoor units. It is required to store the excessive refrigerant charge in a storage tank to optimize the system performance at operating modes.

액체수소 저장탱크의 냉각 방법 분석 (Analysis of Cool-down Operation of Liquid Hydrogen Tank )

  • 유화롱;최병일;도규형;김태훈;김창현;김민창;한용식
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.641-649
    • /
    • 2023
  • This study analyzes the cool-down process of liquid hydrogen storage tanks, which have advantages in terms of large-capacity transfer, storage, and utilization as hydrogen demand increases. A hydrogen liquefaction plant is selected for analysis and an efficient tank cooling method is sought by comparing the time required for the cool-down process with the gas consumption in connection with the gassing-up process required for the operation of the liquid hydrogen storage tank. The results of this study can be referred to in the operation process after the initial start-up and maintenance of the hydrogen liquefaction plant.