• 제목/요약/키워드: Cooling structure

검색결과 856건 처리시간 0.027초

외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량 (Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation)

  • 이규남;정근주
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

백연 방지를 위한 NWD냉각탑의 성능해석에 관한 수치해석적 연구 (A Numerical Study on the Performance Analysis of the Plume Abatement NWD Cooling Tower)

  • 최창혁;최영기;소헌영
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1049-1058
    • /
    • 2001
  • The performance and design analysis for a NWD cooling tower using a combined wet and dry type fill are numerically investigated and compared with the experimental results. The Stoecker's method is applied to the wet section and LMTD or NTU-Effectiveness method to the wet and dry sections. The efficiency ratio of the NWD cooling tower to a wet type crossflow cooling tower is 59.34%. The predicted result shows a good agreement with the experimental data within 1.4% error. Plume abatement is far better with a NWD cooling tower than a counterflow cooling tower. It costs less than a conventional wet/dry tower because the finned exchanger is eliminated. This method also leaves out complexity in structure and Intricacy in operation.

  • PDF

단조용 자동차 부품 T/P Housing과 Valve의 열처리에 따른 조직 및 변형 속도에 관하여 (A study on the Structure and Transformation Rate of Heat Treatment of Forged TAP Housing and Valve for Automotive Parts)

  • 유형종;이호진;이건영;최진일
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.155-158
    • /
    • 2003
  • 자동차 부품 T/P housing과 valve에 사용되는 S20C 계열의 강에 Mn과 V 첨가에 따른 냉각속도의 영향과 조직의 거동, 단조 시 변형속도와 경도 변화를 조사하였다 냉각속도를 증가하면 오스테나이트 결정립에 의한 변태 지연에 의해 변태개시 온도가 저하되었다 미소한 Mn 함량의 증가는 냉각속도를 민감하게 하여 변태개시 온도를 감소 시켜 결정립 미세화를 일으킨다. 또한, 성형압이 클수록 내부보다 표면이 큰 경도값이 나타났다.

  • PDF

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

멘솔처럼 시원하고 신선한 효과를 주는 화합물 (Chemicals with Menthol Cooling and Fresh Effect)

  • 제병권;김도연;이정일;백신;곽대근
    • 한국연초학회지
    • /
    • 제25권2호
    • /
    • pp.160-166
    • /
    • 2003
  • The majority of ι-menthol is still obtained by freezing the oil of Mentha arvensis to crystallize the menthol present. This 'natural' menthol is then physically seperated by centrifuging the supernatant liquid away from the menthol crystal. But the price of natural ι-menthol has fluctuated widely so effort has been devoted to the production of ι-menthol by synthetic more readily available raw materials. In the 1970's, many researcher synthesised a new compounds with the menthol cooling effect. During this period many molecular structure designed and synthesised on concepts of correlation between structure and biological activity and the various types of molecule which give rise to cooling effect more than ι-menthol. Specially, N-alkyl-carboxamide group is substituted for the hydroxyl group in ι-menthol. Recently, the most active compounds synthesised is 4-methyl-3-(1-pyrrolidinyl)-2-[5H]-furanone. This compound is 35 times more powerful in the mouth and 512 times more powerful on the skin than ι-menthol. The cooling effect also lasts twice as long. While not yet commercially available, it is expected that these types of materials will be subjected to toxicological studies and will soon be sell on the market.

Research about the Evaporative Cooling Sleeve of 3.6 MW Wind Generator Stator

  • Yu, Shunzhou;Yang, Jie;Yuan, Jiayi;Tian, Xindong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.61-66
    • /
    • 2014
  • The evaporative cooling technology used in Wind generator stator has unique advantages. Combined with the structure of motor stator and operating conditions, this report based on the research project for the evaporative cooling sleeve of the 3.6MW wind generator, introduces the material requirements and structural characteristics of the sleeve, simulates on the stress, displacement and stability by finite analysis method, and tests the products experimentally. The research results show that the epoxy resin-glass materials have a higher strength and better insulation properties, but the evaporative cooling of the wind generator stator sleeve, because of its thin-walled, and the external pressure, so it's the less rigid. Should make full use of the motor stator core structure, increase its stiffness and improve the stability of the epoxy resin-glass sleeve, which for thin-walled the epoxy resinglass sleeve on the successful application of wind turbines has played an important role.

고압 축소형 재생냉각형 연소기 개발 (Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers)

  • 김종규;이광진;서성현;한영민;최환석
    • 한국추진공학회지
    • /
    • 제13권6호
    • /
    • pp.8-16
    • /
    • 2009
  • 고압 축소형 연소기의 개발에 관하여 기술하였다. 헤드부와 챔버부가 분리형인 연소기와 일체형 재생냉각 방식의 연소기 등 총 4기의 연소기가 개발되었다. 축소형 연소기의 연소 압력은 70 bar이고, 추진제 유량은 5.1~9.1 kg/s이다. 연소성능의 향상을 위해 추진제 유량, 분사기의 recess 수 등을 변화시켰고, 이를 연소시험을 통해 확인하였다. 또한 실물형 연소기에 적용할 재생냉각 채널과 막냉각의 설계 및 제작 기술을 본 축소형 연소기에 적용, 검증하였다.

적외선 윈도우용 가스식 냉각장치 해석 기법 (Analysis of Gas Cooling System for IR Window)

  • 현철봉;구남서;김재영;이호성
    • 한국군사과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, a post-analysis of cooling system for infrared(IR) window was performed based on heating experiment of IR window system. We applied the same experimental conditions to analysis, and then validated the analysis technique by comparing numerical and experimental results. For an analysis software, we used a professional heat/fluid analysis program and the numerical and experimental results were in fairly good agreement. We investigated the effect of thermal transfer between the frame and IR window and also a cooling efficiency between fluid and structure in order to determine the proper parameters for the analysis. In this study, 100 % thermal transfer between the frame and IR window and 30 % cooling efficiency between fluid and structure have been proposed, which can be used in the future conceptual design and analysis of similar IR windows.

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

  • Sulowski, Maciej;Cias, Andrzej;Frydrych, Hanna;Frydrych, Jerzy;Olszewska, Irena;Golen, Ryszard;Sowa, Marek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.563-564
    • /
    • 2006
  • The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at $1120^{\circ}C$ and $1250^{\circ}C$ in $H_2/N_2$ atmospheres and cooled with cooling rates $1.4^{\circ}C/min$ and $6.5^{\circ}C/min$. Convective cooled specimens were subsequently tempered at $200^{\circ}C$ for 60 and 240 minutes.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.