• Title/Summary/Keyword: Cooling model and simulation

Search Result 380, Processing Time 0.03 seconds

Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD (CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측)

  • Son, Jeong-Eun;Yu, Byeong-Ho;Pang, Seung-Ki;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.

Thermal Process Evaluation and Simulation in a Pilot Scale Kimchi Pasteurizer (Pilot Scale 김치순간살균장치(瞬間殺菌裝置)에서의 살균효과분석(殺菌效果分析) 및 Simulation)

  • Gil, Gwang-Hoon;Kim, Kong-Hwan;Chun, Jae-Kun
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.55-63
    • /
    • 1984
  • Lethal effect on Chinese radish Kimchi was investigated by using a pilot scale Kimchi pasteurizer. A simulation model was presented so as to predict the change in viable cell concentration of the Kimchi during pasteurization. D values of microorganisms in the Kimchi were found to be 2.21, 1.62, 0.73, 0.39 and 0.21min at 60, 64, 70, 75 and $80^{\circ}C$, correspondingly, and thereby z value was $19^{\circ}C$. One cycle time required was 0.99min at flow rate of 4 l/min. The ratio of lethality in preheating section to total lethality was 0.3 and the ratio of lethality in holding, precooling and cooling sections to total lethality was 0.7. The experimental data were in good agreement with the values simulated by two model equations to which linear and exponential temperature profiles were applied at $65^{\circ}C\;and\;70^{\circ}C$ in holding section.

  • PDF

Analytical Study of Cooling Performance Comparison in a Refrigerator Truck Using R404A and R744 (R404A와 R744의 냉매를 이용한 냉동탑차 냉장성능 비교에 관한 해석적 연구)

  • Myung, Chi-Wook;Kim, Sang-Hun;Cho, Hong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.119-125
    • /
    • 2011
  • The analysis of performance characteristics in a refrigerator truck using R404A and R744 was carried out by using theoretical method, and each performance was compared with a variation of operating conditions. The components and cycle simulation model were developed by using EES program. To investigate the performance characteristics with operating conditions, the performance of both systems was simulated according to indoor temperature, outdoor temperature, outdoor air velocity and compressor speed. As a result, the R744 system had a better COP than R404A system for given operating condition. The cooling capacity was not increased over the outdoor air velocity of 3 m/s. Besides, the performance of R404A system was more sensitive to operating conditions compared to that of R744 system.

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

Modeling and Simulation of Microlens Fabricated by Modified LIGA Process (변형 LIGA 공정을 통해 제작된 Microlens의 모델링 및 시뮬레이션)

  • Kim, Dong-Seong;Lee, Seong-Geun;Yang, Sang-Sik;Gwon, Tae-Heon;Lee, Seung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1923-1930
    • /
    • 2002
  • In this paper, we present modeling and simulation of microlens formation by means of a deep X-ray lithography followed by a thermal treatment of a PMMA (Polymethylmethacrylate) sheet. According to this modeling, X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. In this modeling, the free volume theory including the relaxation process during the cooling process was considered. The simulation results indicate that the modeling in this study is able to predict the fabricated microlens shapes and the variation pattern of the maximum heights of microlens which depends on the conditions of the thermal treatment. The prediction model could be applied to optimization of microlens fabrication process and to designing a micro mold insert for micromolding processes.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Simulation of Interim Spent Fuel Storage System with Discrete Event Model (이산 모형을 이용한 사용후 핵연료 중간 저장 시설의 전산기 모사)

  • Yoon, Wan-Ki;Song, Ki-Chan;Lee, Jae-Sol;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.223-230
    • /
    • 1989
  • This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system acitivies and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system.

  • PDF

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Prediction of Change in Growth Rate of Algae in Jinhae Bay due to Cooling Water Discharge (냉배수 방류에 따른 진해만의 해조류 성장 속도 변화 예측)

  • Park, Seongsik;Yoon, Seokjin;Lee, In-Cheol;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.308-323
    • /
    • 2021
  • In this study, we aimed to evaluate the environmental changes in Jinhae Bay caused by cooling water using numerical modeling. Cooling water discharge volume from the results of Case 1 (10 m3 sec-1) showed that the environmental changes in Jinhae Bay were extremely insignificant throughout the study period. In the simulation conditions of Case 2 (100 m3 sec-1), there was a decrease in water temperature of approximately 1 - 3℃ within a 5 km radius from the discharge outlet. In Case 3 (1000 m3 sec-1), a decrease in water temperature of up to 4 - 5℃ was observed within a radius of 8 km from the discharge outlet and cooling water discharge spread throughout the Bay. Growth rate of microalgae decreased by up to 15 % in November, whereas it increased by up to 6 % near the Hangam Bay in Case 3. From the above results, we confirmed that the environmental changes in Jinhae Bay due to cooling water discharged from Tongyeong LNG station are extremely insignificant. Moreover, it is expected that cooling water discharge could be utilized as a counter measure for 'red tide bloom' or 'macroalgae growth'.