• Title/Summary/Keyword: Cooling model and simulation

Search Result 380, Processing Time 0.031 seconds

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

Simulation of the Kalina cycle for a Geothermal Power Generation (지열발전을 위한 칼리나 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.782-787
    • /
    • 2008
  • The Kalina cycle simulation study was carried out for a preliminary design of a geothermal power generation system. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The simulation results show that the power generation efficiency over 10% is expected when a heat source and sink inlet temperatures are $100^{\circ}C$ and $10^{\circ}C$ respectively.

  • PDF

Plan Study of Improvement on Thermal Flow at Computer Main Frame (컴퓨터 본체 구조의 열유동에 관한 개선 방안 검토)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • This study is to analyze the internal flow at the inside of computer case which is commonly used. The inner configuration are modelled and simulation analysis is done by ANSYS-CFX. Dead volume is happened according to the positioning of VGA and HDD. The advanced model is suggested by removing this volume and making the smooth cooling flow. This model is formed with the constraint conditions same as the existing model. As compared with the existing model, flow configuration is different and the average temperature becomes lower through flow analysis about the advanced model.

Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis (상변태 예측 및 열응력 해석에 의한 CrMoSC1 강의 열처리 공정 설계)

  • Choi, B.H.;Kwak, S.Y.;Kim, J.T.;Choi, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • Although heat treatment is a process of great technological importance in order to obtain desired mechanical properties such as hardness, the process was required a tedious and expensive experimentation to specify the process parameters. Consequently, the availability of reliable and efficient numerical simulation program would enable easy specification of process parameters to achieve desired microstructure and mechanical properties without defects like crack and distortion. In present work, the developed numerical simulation program could predict distributions of microstructure and thermal stress in steels under different cooling conditions. The computer program is based on the finite difference method for temperature analysis and microstructural changes and the finite element method for thermal stress analysis. Multi-phase decomposition model was used for description of diffusional austenite decompositions in low alloy steels during cooling after austenitization. The model predicts the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimates the amount of martensite also by using Koistinen and Marburger equation. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

An Analysis on the Performance and the Heat Transfer of Molten Carbonate Fuel Cell Stack (용융탄산염 연료 전지 스택의 성능 및 열전달 해석)

  • Koo, J.Y.;Suh, J.C.;Kim, Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.120-129
    • /
    • 1994
  • A numerical investigation has been carried out for the electrochemical reaction, mass and heat transfer characteristics of the Molten Carbonate Fuel Cell(MCFC) stack. The effects of cooling air channel and water gas shift reaction were taken into account. The current density distribution of electrodes, the molecular fractions of reactant gasses and three dimensional temperature distribution can be calculated and shown by several lines of equivalent values. The results have been compared with the existing ones, and reasonable agreement has been obtained. To examine the influence of changing parameters, such as the composition of reactant gases, the target average current density, the utilization of reactant gases, the cooling air inlet temperature and flow rates, the computer simulation has been done. The analysis method and computer program developed in this study will be greatly helpful to design and verify the optimum operating condition of MCFC stack.

  • PDF

A numerical simulation and validation of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 수치적 모델링과 검증)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.785-790
    • /
    • 2010
  • Geothermal energy is gaining wide attention as a highly efficient renewable energy and being increasingly used for heating/cooling systems of buildings. The standing column well (SCW) is especially efficient, cost-effective, and suitable for Korean geological and hydrological conditions. However, a numerical model that simulates the SCW has not yet been developed and applied in Korea. This paper describes the development of the SCW numerical model using a finite-volume analysis program. The model performs the hydro-thermal coupled analyses and simulates heat transfer through advection, convection, and conduction. The accuracy of the model was verified through comparisons with field data measured at SCWs in Korea. Comparisons indicated that the SCW numerical model can closely predict the performance of a SCW.

  • PDF

EFFECT OF THE CHANNEL STRUCTURE ON THE COOLING PERFORMANCE OF RADIATOR FOR TRANSFORMER OF NATURAL CONVECTION TYPE (자연대류를 이용한 변압기용 방열기의 채널 구조가 방열성능에 미치는 영향)

  • Kim, D.E.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.86-93
    • /
    • 2014
  • Increased demand of power-transformer's capacity inevitably results in an excessive temperature rise of transformer components, which in turn requires improved radiator design. In this paper, numerical simulation of the cooling performance of an ONAN-type (Oil Natural Air Natural) radiator surrounded by air was performed by using CFX. The natural convection of the air was treated with the full-model. The present parametric study considers variation of important variables that are expected to affect the cooling performance. We changed the pattern and cross-sectional area of flow passages, the fin interval, the flow rate of oil and shape of flow passages. Results show that the area of flow passage, the fin interval, the flow rate of oil and shape of flow passages considerably affect the cooling performance whereas the pattern of flow passages is not so much influential. We also found that for the case of the fin interval smaller than the basic design, the temperature drop decreases while a larger interval gives almost unchanged temperature drop, indicating that the basic design is optimal. Further, as the flow rate of oil increases, the temperature drop slowly decreases as expected. On the other hand, when the shape of flow passages are changed, temperature drop is increased, indicating that the cooling performance is enhanced thereupon.

Research on fast cool-down of orifice pulse tube refrigerator by controlling orifice valve opening

  • Kim, Hyo-Bong;Park, Jong-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.36-40
    • /
    • 2010
  • In this paper, a noble method for rapid cooldown of pulse tube refrigerator (PTR) was proposed and experimentally investigated. An orifice pulse tube refrigerator generates refrigeration effect by expansion PV work at the cold-end, and its amount is affected by the orifice valve opening. There exists the optimum valve opening for maximum cooling capacity and it varies as cold-end temperature. It is verified from simulation results using isothermal model that the optimum valve opening increases as the cold-end temperature increases. In the experiments, a single stage orifice pulse tube refrigerator is fabricated and tested. The fabricated PTR shows 97.5 K of no-load temperature and 10 W at 110 K of cooling capacity with the fixed orifice valve opening. From experiments, the initial cooldown curve with four cases of valve opening control scenario are obtained. And it is experimentally verified that the initial cooldown time can be reduced through the control of orifice valve opening.

A Study on the Natural Convection Cooling of Electronic Device Considering Conduction and Radiation (전도와 복사를 고려한 전자 장비의 자연대류 냉각에 관한 연구)

  • Lee, K.S.;Baek, C.I.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.266-275
    • /
    • 1995
  • A numerical investigation on the conduction-natural convection-surface radiation conjugate heat transfer in the enclosure having substrate and chips has been performed. A 2-dimensional simulation model is developed by considering heat transfer by conduction, convection and radiation. The solutions to the equation of radiative transfer are obtained by the discrete ordinates method using S-4 quadrature. The effects of Rayleigh number and the substrate-fluid thermal conductivity ratio on the cooling of chip are analyzed. The result shows that radiation is the dominant heat transfer mode in the enclosure.

  • PDF

Numerical Simulation Experiment on the Wind Ventilation Lane of the Local Circulation Winds in Daegu (대구지역의 국지적 대기순환풍의 환기경로에 관한 수치모의 실험)

  • Gu, Hyeon Suk;Kim, Hae Dong;Gang, Seong Dae
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.367-376
    • /
    • 2004
  • In urban area, thermal pollution associated with heat island phenomena is generally regarded to make urban life uncomfortable. To overcome this urban thermal pollution problem, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane, is widely practiced in many countries. In this study, the prevailing wind ventilation lane of a local winds in Daegu during the warm climate season was investigated by using surface wind data and RAMS(Reasonal Atmospheric Model System) simulation. The domain of interest is the vicinity of Daegu metropolitan city(about 900 $km^{2})$ and its horizontal scale is about 30km. The simulations were conducted under the synoptic condition of late spring with the weak gradient wind and mostly clear sky. From the numerical simulations, the following two major conclusions were obtained: (1)The major wind passages of the local circulation wind generated by radiative cooling over the mountains(Mt. Palgong and Mt. Ap) are found. The winds blow down along the valley axis over the eastern part of the Daegu area as a gravity flow during nighttime. (2)After that time, the winds blow toward the western part of Daegu through the city center. As the result, the higher temperature region appears over the western part of Daegu metropolitan area.