• Title/Summary/Keyword: Cooling material

Search Result 947, Processing Time 0.03 seconds

Stability Of $ZnO-Pr_{6}O_{11}-CoO-Cr_{2}O_{3}-Y_{2}O_{3}$Based Varistors with Cooling Rate (냉각속도에 따른 $ZnO-Pr_{6}O_{11}-CoO-Cr_{2}O_{3}-Y_{2}O_{3}$계 바리스터의 안정성)

  • 류정선;정영철;김향숙;남춘우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.410-414
    • /
    • 2001
  • The microstructure, V-I characteristics, and stability of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Y$_2$O$_3$based vairstors were investigated with cooling rate in the range of 2~8$^{\circ}C$/min. The cooling rate relatively weakly affected the microstructure, and the varistor voltage and the leakage current in the V-I chracteristics. But the nonlinear exponent relatively strongly affected by cooling rate. And the cooling rate also greatly affected the stability for DC stress. In gross, the varistors cooled with 4$^{\circ}C$/min exhibited the highest performance in the densification, nonlinearity, and stability. Especially, they exhibited a high stability, in which the variation rate of the varistor voltage and the nonlinear exponent is -1.44% and -4.85%, respectively, under more severe DC stress such as (0.80 V$_{1mA}$9$0^{\circ}C$/12 h)+(0.85 V$_{1mA}$115$^{\circ}C$/12 h)\`(0.90 V$_{1mA}$12$0^{\circ}C$/12 h)+(0.95 V$_{1mA}$1$25^{\circ}C$/12 h)+(0.95 V$_{1mA}$15$0^{\circ}C$/12 h). It should be emphasized that the stability of these varistors is much superior to that of others.s.of others.s.

  • PDF

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

The Study on the Compressive Strength Properties of Mortar using Discarded Bentonite Powder by the Cooling Method after Heat Treatment (폐벤토나이트 분말의 소성 및 냉각조건에 따른 모르터의 압축강도 발현특성에 관한 연구)

  • Kim, Hyo-Youl
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various enviromental trouble as soil and water pollution est. Therefore, this study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted flow test & compressive strength on age of mortar using discarded Bentonite powder. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 600℃. 60min & cooling using of water.

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

Heat Radiation of LED Light using eu Plating Engineering Plastic Heat Sink (동도금 EP방열판에 의한 소형LED조명등 방열)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, the electronic parts are to be thinner plate, smaller size, light weight material and CPU, HDD and DRAM in all the parts have been produced on the basis of the high speed and greater capacity. Also, conventional goods have replaced a LED (Light-Emitting Diode) in lighting products so; such industry devices need to have cooling. To maximize all the performance on the heat-radiated products, the area of heat-radiated parts is required to be cooled for keeping the life time extension and performance of product up. Existing cooling systems are using radiant heat plate of aluminum, brass by extrusion molding, heat pipe or hydro-cooling system for cooling. There is a limitation for bringing the light weight of product, cost reduction, molding of the cooling system. So it is proposed that an alternative way was made for bringing to the cooling system. EP (Engineering Plastic) of low-cost ABS (Acrylonitrile butadiene styrene Resin) and PC (Polycarbonate) was coated with brass and the coating made the radiated heat go up. The performance of radiant heat plate is the similar to the existing part. We have studied experimentally on the radiated heat plate for the light-weight, molding improvement and low-cost. From now on, we are going to develop the way to replace the exiting plate with exterior surface of product as a cooling system.

Thermal Deformation Simulation of Boron Steel Square Sheet in Fluid Cooling Process (사각판재 보론강을 사용한 유체냉각공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Jeon, H.W.;Oh, S.K.;Park, C.D.;Choi, H.Y.;Moon, W.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Fluid cooling is one of the manufacturing processes used to control mechanical properties, and is recently used for hot stamping of automobile parts. The formed part at room temperature is heated and then cooled rapidly using various fluids in order to obtain better mechanical properties. The formed part may undergo excessive thermal deformation during rapid cooling. In order to predict the thermal deformation during fluid cooling, a coupled simulation of different fields is needed. In this study, cooling simulation of boron steel square sheet was performed. Material properties for the simulation were calculated from JMatPro, and three convection heat transfer coefficients such as water, oil and air were obtained from the experiments. It was found that the thermal deformation increased when the difference of cooling rate of sheet face increased, and the thermal deformation increased when the thickness of sheet decreased.

A Flow Channel Design on IR Window Cooling Device (적외선 윈도우 냉각장치 유로 설계)

  • Park, Youn-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.559-566
    • /
    • 2011
  • This paper presents the flow passage design for a window cooling device, which have a conical poppet valve and an emissive orifice. Computational flow analysis and experiment are conducted according to the poppet strokes. The results show satisfactory flow characteristics that pressure is reduced enough to endure material strength and the flow does not choked inside window. The correction factor of discharge coefficients is found between 2-dimensional analysis and experiments, which is applied to control coolant flow rates of the window cooling device.

An Analysis on the Audible Sound Due to Load and Cooling Fan for 154kV Power Transformers (154kV 전력용 변압기의 부하소음 및 냉각팬 소음 분석)

  • Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik;Kim, Gyeong-Tak;Kweon, Dong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • Recently, the audible sound level of power transformer has been reduced due to development of new material and enhancement of manufacturing technology. There is lack of research on the audible sound of winding and cooling fan because the research on reduction of audible sound is concentrated on the core sound. Therefore this paper describes 3 kinds(core, winding and cooling fan) of transformer sound source. Also this paper analyzes the effect of load sound and cooling fan sound on the total transformer sounds. As the results, total sound level of 79dBA class transformer rises 0.2~0.3dB due to effect of load sound and rises 2.1~3.5dB due to effect of cooling fan sound. Also, total sound level of 55dBA class transformer rises 2.3~2.9dB due to effect of load sound and rises 1.9~3.5dB due to effect of cooling fan sound.

Recycling and Characteristics of Plasma Melting Slag Materials Produced by Different Cooling Methods (플라즈마 용융방식으로 배출된 슬래그의 냉각방식에 따른 재료적 특성 및 재활용)

  • Chung, Juyoung;Bae, Wookeun;Kim, Moonil;Park, Seyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.25-31
    • /
    • 2010
  • In this study, it was intended to suggest new cooling method that enables to improve the applicability and added value higher than existing slag by applying new cooling method(powder cooling slag) at the time discharging slag, which is produced from the ash melting system that the plasma torch is used for the first time in Korea. It is suggested the applicative direction in the development of future recycling process by discovering its nature of material and applicative possibility as earthwork material. The ashes produced after the sewage sludge discharged from Y city was incinerated by the fluidized bed method and was used as test materials. As result of XRF(X-Ray Flourescence Spectrometry) analysis, main ingredient of sewage sludge ashes was $SiO_2$(32%) besides CaO, $Al_2O_3$, $Fe_2O_3$, and so on. In addition, as result of XRD analysis, traditional diffuse pattern of glass could be found from granulated air-cooled slags, while a minor crystal phase could be observed from powder cooling slag, because the powder on the surface exists in the state not melted. From EDX(Energy Dispersive X-ray Spectroscopy) analysis, it is deemed that powder ingredient has no change before and after it is used as cooling medium, and accordingly it is thought that the powder can be produced as the material where the function is added if used in different shape.

A Study on Cooling Characteristics of Clathrate Compound with Concentration of TMA (TMA 농도에 따른 포접화합물의 냉각특성에 대한 연구)

  • Kim Jin-Heung;Chung Nak-Kyu;Kim Chang-Oh
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • This study is investigated the cooling characteristics of the TMA clathrate compound including TMA (Tri-methyl-amine, (CH₃)₃N) of 20~25 wt% as a low temperature storage material at -5℃ heat source. The results showed that as the concentration of TMA is increased, phase change temperature and specific heat are increased, but the supercooling and retention time of liquid phase are decreased. Especially, low temperature storage material containing TMA 25 wt% has the average of phase change temperature of 5.8℃, supercooling of 8.0℃, retention time of liquid phase for 10 minutes and specific heat of 4.099 kJ/kg℃ in the cooling process. From the results of this study, TMA clathrate compound showed higher phase change temperature than water md supercooling repression effect.