• Title/Summary/Keyword: Cooling machine

Search Result 266, Processing Time 0.026 seconds

Spindle Design Technology for High Speed Machine Tools

  • Lee, Chan-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.109-115
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static, dynamic and thermal charateristics of spindle unit are needed for special purpose of machine tools. Compromise between those charateristics will be done in concept design phase. High static stiffness at spindle nose may be very important performance for heavy cutting work. High dynamic stiffness is also useful to high precision and high speed machine tools. Improvement of thermal charateristics in spindle lead to high reliability of positioning accuracy. For high speed spindle structure, the design parameter such as, bearing span, diameter, bearing type and arrangement, preload, cooling and lubrication method should be in harmony.

  • PDF

Characteristic of Cold-Weather Concrete by the Variation of Compressive Strength (강도 변화에 따른 한중콘크리트 특성연구)

  • 신성우;김인기;안종문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.154-159
    • /
    • 1995
  • Cold weather concrete presents the many characteristic variation of quality, according to the mixing and cooling point, the cooling time and the quantity of air besides the compressive strength of concrete. Thus, in this study to verify the character of cold-weather concrete we make the concrete specimens at laboratory and cool them at cooling-melting machine and then test the 7days compressive strength of them, with the variation of compressive strength of concrete, cooling point, cooling time, cooling weather and air quantity. At the results, the compressive strength of concrete decrease in the case of early cooling point, long cooling time, low cooling temperature and the low design compressive strength

  • PDF

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions (예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성)

  • Choi, Dae-Bong;Kim, Soo-Tae;Jung, Sung-Hun;Kim, Jin-Han;Kim, Yong-Kee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-36
    • /
    • 2005
  • Use of the high frequency motor spindles are increasing for the high speed machine tools recently. The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball hearings. Thermal characteristics according to the bearing preload and spindle cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal displacement according to the spindle speed, preload and flow rate are measured. Temperature distribution and thermal displacement of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method. The results of analysis are compared with the measured data. This study supports thermal optimization and find out more effective cooling condition. This paper show that the suitable preload and spindle cooling are very effective to minimize the thermal effect by the motor and ball bearings.

A Study on the Cooling Characteristics of the Helical Type Cooling-Jacket of the Built-in Motor Spindle according to the Flow Rate (모터 내장형 주축계의 나선형 냉각 자켓의 유량에 따른 냉각 특성)

  • 김태원;김수태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.691-696
    • /
    • 2000
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. Three dimensional model was selected for the analysis of the helical-type cooling jacket. This model includes the estimation on the amount of heat generation from bearing and built-in motor and the thermal characteristic values such as heat flux on the boundary. The temperature distributions are analyzed and the cooling by Nusselt number and total heat transfer coefficient. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket.

  • PDF

An Analysis of the Thermal Characteristic according to the Cooling Method of the High Speed Spindle Housing (고속 주축 하우징의 냉각방식에 따른 열특성 해석)

  • Jeong D.S.;Kim S.T.;Choi D.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.447-448
    • /
    • 2006
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used fur the high speed machine tools recently. The important problem in this spindle is to reduce and minimize the thermal effect by motor and bearing. In this study, the analysis of thermal characteristic of spindle is performed according to the cooling methods of housing by using finite element method. This result can be applied to the design and manufacture of the high speed spindle.

  • PDF

Thermal characteristics according to the preload and cooling conditions for the high frequency motor spindle with grease lubrication (그리스 윤활 고주파 모터 주축의 예압과 냉각에 따른 열특성)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.439-444
    • /
    • 2004
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and ball bearings. In this study. the effects of bearing preload and cooling for high speed spindle with high frequency motor are investigated. A high speed spindle is composed of angular contact ball bearings, high frequency motor, grease lubrication, oil jacket cooling, and so on. Heat generation of the bearing and the high frequency motor are estimated from the theoretical and experimental data. The thermal analyses of high speed spindle to minimize the thermal effect and maximize the cooling effect are carried out under the various cooling conditions and preload. Method of variable bearing preload and cooling can be useful to design the high speed motor spindle. The results show that the optimal preload and cooling are very effective to minimize the thermal displacement by motor and ball bearing.

  • PDF

On Cutting Characteristics Change of Low Temperature Cooling Tool -Cutting Characteristics of Cage Motor Rotor- (저온냉각공구의 절삭특성 변화 -모타 회전자의절삭특성-)

  • 김순채
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.37-43
    • /
    • 1995
  • The cutting process of cage motor rotor require high precision and good roughness, the surface roughness fo cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting condition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool. 3) The low temperature cooling tool effected machinability of the cutting direction in machined surface. 4) The low temperature cooling decreased burr of corner in feed direction.

  • PDF

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

Applied machine vision technique in measuring the position of the hot steel strip (Hot strip 위치측정을 위한 Vision 기술 적용)

  • 노경숙;이동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1072-1075
    • /
    • 1996
  • In hot rolling process at steel plant, cooling of the rolled strip at the exit of the rolling mill is one of the most important processes that would decide the quality of products. To guarantee the thermal equity over the strip, the device called an edge-masking unit is being used. That is installed between the strip and the sprayers to cover the side edge of the strip from spraying water. The accuracy of positioning the bracket is the key to this operation. A machine vision technique can be applied to measure the position of the side edges before an as-rolled strip enters into the cooling facility to rectify the error of preset position of the bracket. This paper shows the simulation result of applying the machine vision technique to measuring the position of a strip and suggests the solution for the target.

  • PDF