• Title/Summary/Keyword: Cooling in the mold

Search Result 280, Processing Time 0.03 seconds

Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels (연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동)

  • Kim, H.C.;Lee, J.H.;Kwon, O.D.;Yim, C.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System (금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구)

  • Choi, Je-Se;Choi, Byung-Hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2596-2603
    • /
    • 2013
  • The precision and endurance of tire mold are very important factors to decide the quality of tire. However, the investigation on the thermal deformation of tire mold has a lot of trouble because the tire mold is produced in airtight permanent casting material. In this study, the thermal deformations such as temperature, displacement and stress distributions inside the AC7A tire mold casting material were analyzed by numerical analysis according to the preheating temperature of permanent casting device. In order to verify the results of numerical analysis, the experiments for temperature measurement of the AC7A casting material were carried out under the same condition with numerical analysis. For the numerical analysis, "COMSOL Multiphysics" was used. The preheating temperatures were set up $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. The thermal deformations were calculated in each case. When the preheating temperature is $300^{\circ}C$, displacement and stress are the lowest with 0.25mm and 0.351GPa, but the temperature is the highest with $374.27^{\circ}C$. When the experimental results were compared with the numerical results, there were some temperature differences because of the latent heat by phase change heat transfer. However, the cooling patterns were almost similar except for the latent heat section.

Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E) (유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E))

  • Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

An Experimental Study on Flow Characteristics of PBK40 for Glass Lens Press Process Simulation of a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 실험적 연구)

  • Chang S.H.;Heo Y.M.;Yoon G.S.;Shin K.H.;Lee Y.M.;Jung W.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.567-568
    • /
    • 2006
  • Generally, progressive type GMP process is more efficient than batch type because there are advantages that problems of each stage(heating, press, cooling etc.) are easily grasped and a time of production is shortened. But if single cavity is used in progressive type GMP process, there is disadvantage that productivity is decreased. So, in order to improve productivity of progressive type GMP process, it is essential to secure multi cavity mold technic. In this study, as a fundamental study to develop multi cavity used in glass lens molding, we conducted a compression test for PBK40.

  • PDF

Effect of Austenitizing Ratio on the Delta Ferrite Volume Fraction and Corrosion Resistance of Shell Mold Cast SSC13 Elbow Fitting (셀 몰드 주조한 SSC13 엘보우 피팅 주강의 고용화율에 따른 델타 페라이트 분율 변화와 내부식특성)

  • Kim, Kuk-Jin;Lim, Su-Gun;Ju, Heong-kyu;Pak, Sung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.109-113
    • /
    • 2015
  • In this study, the measurement of FN (ferrite volume fraction) and the solution annealing ratio at a temperature of $1130^{\circ}C$ were determined with 15A elbow fittings of shell cast SSC13, and the corrosion resistance with and without austenitizing solution annealing were investigated in comparison with AISI304. The delta ferrite phase was observed in the material due to the slow cooling effect of the shell mold casting. However, the delta ferrite phase decreased gradually with the solution annealing at a temperature of $1130^{\circ}C$. The hardness generally decreased with a heat treatment; however, its corrosion resistance was improved with the heat treatment. In addition, when a passivation treatment was applied, its corrosion ratio showed the lowest value. The pattern of general corrosion decreased due to the decrease in the delta ferrite phase with the solution annealing treatment. Consequently, it is suggested that the corrosion resistance of SSC13 elbow fittings can be improved by increasing the ratio of any solution annealing treatment used and by decreasing the ferrite phase. The relationship between the ratio of solution annealing and delta ferrite is expressed as follows: SA (solution annealing ratio,%) = 98 - FN (ferrite volume fraction, %).

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.

Effects of Packing Parameter on Plastic Article Dimensions in the Plastic Injection Molding (사출성형 시 성형제품치수에 미치는 패킹변수의 영향)

  • Kim, Bum Joon;Shin, Ju Kyung;Lee, Jeong Goo;Sohn, Il Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The molding process can be divided into five separate steps: plastification, injection, holding, cooling, and finally ejection. In the plastic injection molding, the effect factor such as mold temperature, injection speed, packing pressure and inhomogeneous cooling under packing process affects both the article dimension and physical characteristics. Especially, the packing pressure is the most critical factor to affect molded articles quality among the packing parameters. In this paper, the CAE simulation considering the molding condition is performed to predict the faulty cause which appears in the packing process between cavities of injection molding machine. From the results of CAE simulation, the packing phenomena according to the product form and the gate position was investigated to improve the article quality and minimize the various molding defects. The effect of packing pressure and gate number on the injection molding was discussed.