• Title/Summary/Keyword: Cooling effects

Search Result 1,345, Processing Time 0.032 seconds

An Experimental Study on the Effects of the Cooling Jacket Design Parameters on the Performance of Thermoelectric Cooling System (열전소자 냉각 자켓의 설계인자가 열전냉각 시스템의 성능에 미치는 효과에 대한 실험적 연구)

  • Lee, J.E.;Park, S.H.;Kim, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2079-2084
    • /
    • 2007
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached on the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket included the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The introduction of geometrical complexity of the cooling water flow passage to the cooling jacket also showed significant improvement on the performance of the thermoelectric refrigeration system such as the cooling capacity and the COP of the refrigeration system.

  • PDF

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

Nocturnal Radiant Cooling by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각효과)

  • Byun, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1300-1305
    • /
    • 2004
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed at a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate surfaces such as galvanized Iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black painted surface show the lowest temperature that is lower than its ambient temperature. The maximum radiant cooling temperature difference, that is ambient temperature minus plate temperature, observed is about 5K..

  • PDF

Ratio of Mixing Effects due to Wind, Surface Cooling, and Tide on West Coast of Korea in December, 1998

  • Park, Yong-Kyu;Lee, Byung-Gul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.249-253
    • /
    • 2000
  • Data obtained from a cruise from 4~12 December, 1998 was analyzed to estimate the mixing effects of wind, surface cooling, and tide. A band denoting a mixing area with a temperature difference of less than 1$^{\circ}C$ between the sea surface and the bottom extended 40~60 km from the coast into the open sea, following 125$^{\circ}$ 30\` E in longitude. This band was divided into two areas; a well-mixed area close to the coast and a stratified region in the open sea. The mixing effect due to the wind was only 2%, yet the mixing effect due to the tides was about 68%. This indicates that surface cooling and tides were the major factors involved in the mixing mechanism on the west coast during the cooling season.

  • PDF

Nocturnal Radiant Cooling Experiment by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각 실험)

  • Byun Ki-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.605-610
    • /
    • 2005
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed on a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate sufaces, namely, galvanized iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black Painted surface showed the lowest temperature that is lower than the ambient temperature. The maximum radiant cooling temperature difference, which is ambient temperature minus plate temperature, observed is about 5 K.

Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan

  • Hanif, Aysha;Nasar-u-Minallah, Muhammad;Zia, Sahar;Ashraf, Iqra
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Urban Heat Island (UHI) effect has been widely studied as a global concern of the 21st century. Heat generation from urban built-up structures and anthropogenic heat sources are the main factors to create UHIs. Unfortunately, both factors are expanding rapidly in Lahore and accelerating UHI effects. The effects of UHI are expanding with the expansion of impermeable surfaces towards urban green areas. Therefore, this study was arranged to analyze the role of urban cooling intensity in reducing urban heat island effects. For this purpose, 15 parks were selected to analyze their effects on the land surface temperature (LST) of Lahore. The study obtained two images of Landsat-8 based on seasons: the first of June-2018 for summer and the second of November-2018 for winter. The LST of the study area was calculated using the radiative transfer equation (RTE) method. The results show that the theme parks have the largest cooling effect while the linear parks have the lowest. The mean park LST and PCI of the samples are also positively correlated with the fractional vegetation cover (FVC) and normalized difference water index (NDWI). So, it is concluded that urban parks play a positive role in reducing and mitigating LST and UHI effects. Therefore, it is suggested that the increase of vegetation cover should be used to develop impervious surfaces and sustainable landscape planning.

An Experimental Study on Effect of External Vessel Cooling for the Penetration Integrity in the KNGR during a Severe Accident (중대사고 시 차세대 원전 관통부의 건전성에 대한 원자로 용기 외벽 냉각의 영향 평가 실험 연구)

  • Kang, K.H.;Park, R.J.;Kim, J.T.;Kim, S.B.;Lee, K.Y.;Park, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.127-132
    • /
    • 2001
  • An experimental study on penetration integrity of the reactor vessel has been performed under external vessel cooling during a core melt accident. In this study a series of experiments are performed for the verification of the effects of coolant in the annulus between the ICI(In-Core Instrumentation) nozzle and the thimble tube and also the effects of external vessel cooling on the integrity of the penetration using the test section including only one penetration and $Al_{2}O_{3}$ melt as a corium simulant. The experimental results have shown that penetration is more damaged in the case of no external vessel cooling compared with the case of external vessel cooling. It is preliminarily concluded that the external vessel cooling is very effective measure for the improvement of the penetration integrity. Also it is confirmed from the experimental results that the coolant in the annulus reduces the melt penetration distance through the annulus and enhance the integrity of the reactor vessel penetration in the end.

  • PDF

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow (평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구)

  • Karng, Sarng-Woo;Shin, Jae-Hoon;Han, Hun-Sik;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Cooling Strategy for Improving the Performance of Endurance Sports in Heat (고온 환경에서 지구성 스포츠의 운동수행력 향상을 위한 냉각요법의 전략)

  • Park, Chan-Ho;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2017
  • It is well established that endurance performance is negatively affected by environmental heat stress. Numerous scientific investigations have attempted to improve performance in the heat with pre-cooling and per-cooling for endurance athletes. Some cooling strategies are more logistically challenging than others, and thus are often impractical for use in training or competition. The purpose of this study was to review the literature on the use of cooling interventions in the improvement of performance and recovery from exercise-induced heat stress. We undertook an examination that focused on the effects of pre-cooling and per-cooling on the improvement in endurance performance and the effects of post-exercise cooling on recovery. The benefits for pre-cooling and per-cooling strategies undertaken in the laboratory setting could be employed by athletes who compete in hot environmental conditions to improve performance. Most laboratory studies have shown improvements in endurance performance following pre-cooling and per-cooling, and in recovery following post-cooling. Cooling strategies such as cooling vest, neck cooling collar, menthol and ice slurry are practically relevant to sports field. Cooling interventions that can be applied frequently to reduce thermal strain prior to, during and directly after training appear to be the best effective strategy to improve performance and recovery. Future research is warranted to investigate the effectiveness of practical pre-cooling and per-cooling strategies in competition or field settings.