• Title/Summary/Keyword: Cooling and Heating Energy

Search Result 943, Processing Time 0.025 seconds

Comparative Analysis of Energy Performance of Hydrothermal, Geothermal Source and Hybrid Heat Pump System According to Internal Heat Load for Office, School and Smart Farm (건축물 용도별 내부 발열부하에 따른 수열원, 지열원 및 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석)

  • Park, Sihun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, comparative analysis of energy performance in Taebaek city, a test area, by applying hydrothermal, geothermal source and hybrid heat pump system to office, school and smart farms with different internal heat loads. The conclusion is as follows. In the load characteristics by use of buildings, it was found that office had a large cooling load compared to heating load, school had a large heating load compared to cooling load, and smart farm had only cooling load year-round. Performance analysis of the heat pump system in office shows that the cooling COP of the hydrothermal source is 5.12% and the heating COP is 3.22% lower based on the geothermal source, the cooling COP of the hybrid is 0.41% higher, and the heating COP is the difference in performance appeared sparsely. The performance analysis of the heat pump system in school showed that the cooling COP of the hydrothermal source was 10.44% and the heating COP 3.22% lower based on the geothermal source, and the performance difference between the hybrid cooling and heating COP was insignificant. Heat pump system performance analysis in smart farm only occurred with cooling load. Based on geothermal sources, the cooling COP of the hydrothermal source was 46% and the cooling COP of the hybrid was 19.65%, respectively.

Heating and Cooling Load of Building according to Atrium Layout

  • Jeong, Nam-Young;Lee, Ji-Young;Chae, Young Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Purpose: The purpose of this study is to present basic data which would be applied on the early stage of the architectural design. And that determines the introduction of the atrium by comparing and analysing the environmental performance of atrium building. Method: The building forms are classified into low storied building, middle storied building and high storied building. This study compares and analyses energy performance of the standard building without atrium and the atrium building which has one-side, two-side, three-side, four-side, and linear atrium by measuring of annual heating and cooling load with EnergyPlus. Result: As a result of the analysis of the relative annual heating and cooling load by building type, it is shown that the fluctuation of cooling load in low storied building is large because heat storage in atrium affects building, and the fluctuation of heating load in high storied building is large owing to the effect of external wall area of atrium which makes heat loss. Especially, it indicated the largest annual heating and cooling load in four-side atrium of low storied building, and in one-side atrium of high storied building.

TRNSYS Dynamic Simulation for Solar Heating and Cooling Load Estimations (태양열 냉난방 부하산정을 위한 TRNSYS 동적 시뮬레이션)

  • Choi, Chang-Yong;Ko, Sang-Cheol;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the heating and cooling load estimations for the library of a cultural center building located in Gwangju Korea by TRNSYS with Type 56 of multi-zone building components. In this study, energy rate control mode is selected and the design temperatures for heating and cooling are specified respectively as 20oC and 26oC. Reading rooms of the library are located on the third floor of the cultural center building, and this third floor space is modeled as the five thermal zones for the TRNSYS simulation. Among the five zones, attention is given to the two zones which are the reading rooms 1 and 2. Since these two zones are to be heated and cooled by the solar thermal system which is planned to be installed in the building, dynamic thermal behaviors of the two zones are analyzed by the heating and cooling load estimations.

Ventilation Rate Impact on Heating and Cooling Energy Consumption in Residential Buildings : Concentrated on a Detached House in Cold and Hot/Humid Climatic Zones of USA (환기량의 주거건물 냉난방에너지 소비에 대한 영향 : 미국 한랭기후 및 고온다습기후의 단독주택을 중심으로)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.747-753
    • /
    • 2011
  • The purpose of this study was to quantify the impact of the ventilation rate on heating and cooling energy consumption in a detached house. For it, a series of simulations for the application of the diverse ventilation rate (ACH) were computationally conducted for a prototypical detached residential building in the cold climate (Detroit, Michigan) and hot/humid climate (Miami, Florida) of USA. Analysis revealed that ventilation is a significant heat losing source in the cold climate; thus, the higher ventilation rate significantly increases the heating energy consumption and energy cost in the cold climate; while the impact on energy increase for heating and cooling energy consumption is similar in hot/humid climate with less significancy compared to cold climate. The research outcome of this study could be a fundamental data for determining the optimal ventilation rate in terms of indoor air quality, but also building energy performance well.

A Study on the Analysis of Heating and Cooling Load through Applying Window Film Insulation (열 차단 필름의 적용에 따른 냉난방 부하 분석에 관한 연구)

  • Kim, Seok-Hyun;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.47-53
    • /
    • 2013
  • In order to reduce the energy consumption of the building, much effort is being made. The problems are that excessive solar radiation in summer and the heat loss in winter by the increase of window area. To prevent this problems, government limited the window area ratio or the performance of windows in new buildings. In order to reduce energy consumption of the existing buildings, the window film insulation is spotlight because the window film insulation was simple to installation. This study confirmed the performance of the window film insulation and affect to heating & cooling load of buildings. The impact of the window film insulation coating was confirmed by experiment. And this study confirmed the annual heating & cooling load by simulation. As a results, the surface temperature of coated window was higher than the surface temperature of existing window. The window film insulation was increased surface temperature of window. And this study confirmed that the increased surface temperature was slightly affected the room air temperature through experiment of the insulation box. The results of the heating and cooling load by simulation, this study confirmed that the case of coated window film insulation decreased cooling load in summer and increased heating load in winter. Also the annual total heating & cooling load was increased a little in the case of coated the window film insulation.

Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation (외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

Suggestion of the Worth Evaluation of Cool Air and the Allocation Methodology of Cooling Cost (냉기의 가치평가 및 냉방비 배분방법론 제안)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. We have suggested new cost allocation methodology as a worth evaluation method in the precedent study, and preformed the worth evaluation and cost allocation on four kind of warm air produced from a heating system as an example. In this study, we applied the suggested method to four kind of cool air, and preformed the worth evaluation and cost allocation on each cool air. As a result, similarly to the precedent study, the more energy a customer saved, the more cooling unit cost decreased, and the more energy a customer consumed, the more cooling unit cost increased. From this analysis, we hope that the suggested methodology can offer a theoretical basis to the energy charge policy of government, and induce the spontaneous energy saving of consumers.

The Energy Performance Evaluation of Multi-purpose Solar Window System (다기능 복합 솔라윈도우 시스템의 에너지성능평가)

  • Cho, Yil-Sik;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

Effects of Difference in Tree Cover on Use and Cost of Heating and Cooling Energy in Residential Neighborhoods of Chuncheon (춘천시 주거지구내 수목피도의 차이가 난냉방에너지 이용 및 비용에 미치는 효과)

  • 조현길;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • This study quantified shading, evapotranspiration and windspeed-reduction effects of trees on use and cost of heating and cooling energy in two residential neighborhoods of Chuncheon different in tree cover. Annual savings per residence of heating energy were approximately 1,210 MJ(1%) and those of cooling energy, 130 kWh(10%) in study district 1 having tree cover of about 10% . For district 2 with tree cover of about 20%, annual heating and cooling savings were 2,130 MJ(2%) and 180 kWh(19%) per residence, respectively. Trees annually saved energy costs by approximately ₩31,000 ($26, $1=₩1,200) per residence in district 1 and by ₩49,000($41) in district 2. One tree taller than 3 m resulted in annual energy savings of ₩8,000($7) in the study districts. Energy savings by trees in district 2, which had higher tree cover by 10% difference than district 1, were about 2 times greater than those in district 1. This implies that more tree plantings could enhance energy saving effects. Of the total costs saved, 58% was attributed to windspeed reduction and 47%, evapotranspiration. However, shading increased energy costs by 5% due to tree plantings at the wrong locations. Full tree plantings on the west and north of buildings and avoidance of shade-tree plantings of use of solar-friendly trees on the south are recommended to increase building energy savings efficiently.

  • PDF