• Title/Summary/Keyword: Cooling Speed

Search Result 704, Processing Time 0.029 seconds

A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions (고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구)

  • Choi, Dae-Bong;Kim, Soo-Tae;Lee, Seog-Jun;Kim, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Thermal characteristics according to the preload and cooling conditions for the high frequency motor spindle with grease lubrication (그리스 윤활 고주파 모터 주축의 예압과 냉각에 따른 열특성)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.439-444
    • /
    • 2004
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and ball bearings. In this study. the effects of bearing preload and cooling for high speed spindle with high frequency motor are investigated. A high speed spindle is composed of angular contact ball bearings, high frequency motor, grease lubrication, oil jacket cooling, and so on. Heat generation of the bearing and the high frequency motor are estimated from the theoretical and experimental data. The thermal analyses of high speed spindle to minimize the thermal effect and maximize the cooling effect are carried out under the various cooling conditions and preload. Method of variable bearing preload and cooling can be useful to design the high speed motor spindle. The results show that the optimal preload and cooling are very effective to minimize the thermal displacement by motor and ball bearing.

  • PDF

Energy Saving with Conversion Speed Drive of Cooling Tower Fans

  • Burapanonthachai, Araya;Chaikla, Amphawan;Trisuwannawat, Thanit;Julsereewong, Prasit;Chansangsuk, Dumri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1017-1022
    • /
    • 2004
  • This paper presents the conversion speed drive of the cooling tower fans from constant to variable speed. The speed of fan is adjusted using variable speed drives. Since the ambient temperature of cooling tower is varied seasonally, an economic evaluation was performed to determine the potential annual savings. The performances of the proposed technique were observed using cooling tower fans of chemical plant in Thailand as an illustrative case study. The experimental results demonstrating the energy savings fork cooling process and some economic benefits are obtained.

  • PDF

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

Study on Design of the Cooling System Used for the Propulsion System of the High-Speed EMU (동력분산형 고속전철의 추진시스템용 냉각장치의 설계 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Ki, Jae-Hyung;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1221-1226
    • /
    • 2008
  • Present, the cooling method of using a phase-change heat transfer such as immersed type, heat pipe etc is applied in cooling of high-capacity power semiconductors of the main power system for the high speed train with the concentrated traction. In order to apply these phase-change cooling system to the high speed EMU to be developed, needed are technological researches of consideration of installing space, air passage, light weight material and miniaturization. Although this research establishes design specifications through theoretical analysis and computational analysis from the basic design process of the cooling system of the propulsion system for the high-speed EMU, when details design is completed, present improvement subject and optimum design before manufacturing the prototype of the cooling system on the basis of analysis results. And then, carried out will be the performance tests through prototype manufacture and reliability estimation by components of cooling system.

  • PDF

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

Effects of regenerator and cooler on the cooling performance of a vuilleumier cycle heat pump (재생기 및 냉각기가 VM열펌프의 냉방성능에 미치는 영향)

  • Lee, G.T.;Kang, B.H.;Yoo, H.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.333-342
    • /
    • 1997
  • An experimental study has been carried out to investigate the effects of the combination of the different wire mesh number in a regenerator and the tube number in a cooler on the cooling performance of a Vuilleumier cycle heat pump. Effects of operating conditions, such as charging pressure, operating speed, and heat input, on the cooling performance are also studied. The experimental results obtained indicate that the cooling performance could be improved with the proper combination of different wire meshes in a regenerator. More tubes in a cooler are desirable for better cooling performance. It is also found that the cooling capacity is enhanced, whereas COP is reduced with an increase in the heater tube temperature and the revolution speed. Both the cooling capacity and COP are incereased with a higher charging pressure.

  • PDF

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.