• Title/Summary/Keyword: Cooling Season

Search Result 229, Processing Time 0.021 seconds

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

A Study on Optimal Operation of Summer Season Cooling System with Numbers of Heat Pumps (다수의 히트펌프로 구성된 냉난방시스템에서 하절기 히트펌프의 최적운전에 관한 연구)

  • Shin, Kwan-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Heat-pump system has a special feature that provides heating operation in winter season and cooling operation in summer season with a single system. It also has a merit that absorbs and makes use of wastewater heat, terrestrial heat, and heat energy from the air. Because heat-pump system uses midnight electric power, it decreases power peak load and is very economical as a result. By using the property that energy source is converted to low temperature when losing the heat, high temperature energy source is used to provide heating water and low temperature energy source is used to provide cooling water simultaneously in summer season. This study made up a heat-pump system with 4 air heat sources and a water heat source and implemented the optimal operation algorithm that works with numbers of heat pumps to operate them efficiently. With the heat-pump system, we applied it to cooling and heating operation in summer season operation mode in a real building.

A Study on Clothing Purchasing Behaviors and Design Preference of Summer Clothes using Cooling Textiles (냉감소재를 사용한 여름철 의류의 구매행동과 디자인 선호도 연구)

  • Kwon, Eun-Sun;Lee, Mi-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.2
    • /
    • pp.55-70
    • /
    • 2014
  • The purpose of this study was to investigate purchasing behaviors of summer clothes using cooling textiles and clothing design preference in summer season. The subjects were 623 married women aged from 30s to 60s. The research method was a survey and the measuring instruments consisted of purchasing behaviors of summer clothes using cooling textiles, clothing design preference in summer season, and subjects' demographics attributions. The data were analyzed by frequency analysis, multiple response analysis, cross tabs analysis, and $x^2$ test, using SPSS statistical program. The results were as follows. First, important clothing selection criteria were design, price, and textiles. The main items using cooling textiles that female consumers purchased were T-shirts, pants, and outdoor & sportswear. Main information sources of summer clothes using cooling textiles were internet and store display, and purchasing places were fashion outlet, internet, brand store, and department store. Second, female consumers most preferred comfortable and casual style. They mainly preferred white and blue color, pastel and pale tone, plain pattern, and cotton and functional materials in summer season. Third, there were many important differences among 4 age groups on purchasing behaviors of summer clothes using cooling textiles and design preference in summer season.

  • PDF

A Study on the Thermal Environmental Analysis and the Application of Radiant Floor Cooling in Apartment Building (공중주택의 열환경분석과 바닥복사냉방의 적용에 관한 연구)

  • 김용이;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.541-548
    • /
    • 2001
  • The objective of this study is to analyze the possibilities and considerations for the application of the radiant floor cooling system by analyzing the problems of a conventional cooling system through field tests and thermal performance simulations of the radiant floor cooling in an apartment building. The results are as follows. (1) Problems of he conventional cooling system with PAC()packaged air conditioner)'s include draft, local discomfort, and excessive electrical peak demand. (2) According to the measurement during the cooling and intermediate seasons, the floor surface temperatures which are experienced at the time of cooling with PAC\`s and during intermediate season are similar to the temperatures for radiant floor cooling. (3) The radiant floor cooling system is applicable to apartment buildings during the cooling season, especially on hot and clear days.

  • PDF

Peak Load Estimation of Pole-Transformer in Summer Season Considering the Cooling Load of Customer (수용가 냉방부하를 고려한 하절기 주상변압기 최대부하 추정)

  • Yun, Sang-Yun;Kim, Jae-Chul;Kim, Gi-Hyun;Im, Jin-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • In this paper, we propose a method for estimating the peak load of pole-transformer in summer season considering the degree of cooling load possession in customer. The cooling load of customer is selected as the most reliable parameter of peak load in summer season. The proposed estimation method is restricted to the aspect of load management for pole-transformer. The main concept of proposed method is that the error of peak load estimation using load regression equation reduces with considering the degree of cooling load possession in customer. We propose an index for estimation of cooling load possession in each customer. The proposed index is defined as cooling load possession in customer (CLPC) and obtained from the increment of monthly electric energy. The membership function for deciding the uncertainty of cooling load possession in customer is used. The database of pole-transformer in Korea Electric Power Corporation (KEPCO) is used for case studies. Through the case studies, we verify that the proposed method reduces the error of peak load estimation than the conventional method in domestic.

  • PDF

Calculation of Outdoor Air Fraction through Economizer Control Types during Intermediate Season

  • Hong, Goopyo;Hong, Jun;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.13-19
    • /
    • 2016
  • Purpose: In this study, we examined outdoor air fraction using historical data of actual Air Handling Unit (AHU) in the existing building during intermediate season and analyzed optimal outdoor air fraction by control types for economizer. Method: Control types for economizer which was used in analysis are No Economizer(NE), Differential Dry-bulb Temperature(DT), Diffrential Enthalpy(DE), Differential Dry-bulb Temperature+Differential Enthalpy(DTDE), and Differential Enthalpy+Differential Dry-bulb Temperature (DEDT). In addition, the system heating and cooling load were analyzed by calculating the outdoor air fraction through existing AHU operating method and control types for economizer. Result: Optimized outdoor air fraction through control types was the lowest in March and distribution over 50% was shown in May. In case of DE control type, outdoor air fraction was the highest of other control types and the value was average 63% in May. System heating load was shown the lowest value in NE, however, system cooling load was shown 1.7 times higher than DT control type and 5 times higher than DE control type. For system heating load, DT and DTDE is similar during intermediate season. However, system cooling load was shown 3 times higher than DE and DEDT. Accordingly, it was found as the method to save cooling energy most efficiently with DE control considering enthalpy of outdoor air and return air in intermediate season.

Experimental Study on Indoor Thermal Environment of an Office Building During Cool ing Season (실내 열환경에 관한 실측조사 연구 -냉방기 사무소건물을 중심으로-)

  • Kim, Sung-Wan;Jang, Hai-Jin;Park, Sang-Dong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.3
    • /
    • pp.189-197
    • /
    • 1983
  • In this study, the thermal environment of a certain building was investigated by using of concerned equipments and enquete sheets. The measured items were temperature, humidity, air flow and radiant heat, and thermal responses for the occupants were checked also, which are oriented to be used as basic data for environmental design. The results of this study are as followed. 1. The optimal room temperature was $24\~26.5^{\circ}C$ DBT in cooling season. 2. Under the condition from $50\%\;to\;70\%$ of relative humidity, the difference of relative humidity did not impact upon the feeling temperature. 3. In cooling season, the average clothing factor of occupants was 0.34 clo ; 0.49 clo for men and 0.25 clo for women. 4. The average working factor of occupants was $1.1\~1.3\;Met$ in that cooling season.

  • PDF

Design Temperature and Absolute Humidity for Peak Cooling and Heating Load Calculation with ETD Method (실효온도차법에 의한 최대열부하 계산용 온습도에 관한 연구)

  • Kim, D.C.;Seo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.278-284
    • /
    • 1993
  • A simplified TAC method was developed for the selection of design temperature and absolute humidity for peak cooling and heating load calculation with ETD method. And the design data of the 11 major cities in Korea were obtained. Based on the simplified TAC method, the design data for summer and autumn cooling season were selected by the TAC 5.0% of July through August and TAC 5.0% of October, respectively. But the design data for winter heating season were selected by the conventional TAC 2.5% of the full winter season.

  • PDF

Inside Environment Variation of Solar-Heated Greenhouse with Rock Bed Storage in Summer Season (여름철 자갈축열 태양열 온실의 내부환경 변화(농업시설))

  • 이석건;이종원;이현우;김길동
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.308-314
    • /
    • 2000
  • Objects of this study were to find the cooling effect of solar-heated greenhouse with rock bed storage in summer season and to suggest operation method of cooling energy saving in summer cropping greenhouse. Experiments were performed to analyze inside environment variation of solar-heated greenhouse. When we took account of different shading and ground conditions of greenhouse, we could conclude that inside average daytime temperature of the solar-heated greenhouse was 2.0∼2.4$^{\circ}C$ lower than the general greenhouse in summer season.

  • PDF

A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms (천장 카세트형 냉·난방기에 의해 형성되는 학교 교실의 실내 열환경 및 공기환경의 개선에 대한 연구)

  • Chang, Hyun-Jae;Lee, Ha-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.141-148
    • /
    • 2012
  • Ceiling cassette type air conditioner has been a main stream as a heating/cooling system recently in school, Korea. In this study, indoor thermal environments made by ceiling cassette type air conditioner were investigated by CFD simulation. Concentrations of $CO_2$ were investigated by a field measurement. Indoor thermal environment with the velocity inlet angle of $45^{\circ}$ from the ceiling in heating season was very ununiform so that thermal area was divided into two parts those the one is window side which is cold, and the other is corridor side which is hot. In cooling season under the same condition, there are areas too hot or too cold. If the velocity inlet angle is set in $30^{\circ}$ from the ceiling, indoor thermal environments was improved greatly in cooling season and heating season, too. Also, from the field measurement of $CO_2$ concentrations, it was suggested to install ventilators with proper air volume considered the number of class students.