• Title/Summary/Keyword: Cooling Plate

Search Result 509, Processing Time 0.026 seconds

Numerical Analysis of Heat Transfer Characteristics of Cooling System for 2.3 kW EV Battery Pack (2.3 kW급 전기자동차 배터리팩용 냉각 장치의 열전달 특성에 관한 해석적 연구)

  • Seong, Dong-Min;Park, Yong-Seok;Sung, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.44-49
    • /
    • 2022
  • The improvement in the battery performance and life using a battery thermal management system directly affects the improvement in the performance, life, and energy efficiency of electric vehicles. Therefore, this study numerically analyzed the heat exchange processes between the coolant inside the cooling plate channel and the heat generated by the battery. The cooling performance was analyzed based on the average temperature, temperature uniformity, and the maximum and minimum temperature differences of the battery. A performance difference existed depending on the coolant inlet temperature but showed the same tendency of cooling performance according to the shape of each plate's channel. Type 1 showed the best results in terms of battery temperature uniformity, which is the most important measure of battery performance; Type 2 showed the best results in terms of the average temperature of the battery; and Type 3 showed the best results in terms of the maximum and minimum temperature differences of the battery compared with that of the other cooling plates.

Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating (50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes (히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상)

  • Park, Gyu Jin;Yang, Jin Oh;Lee, Jae Joong;Kwak, Ho Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

Study on Cooling Characteristic Improvement in Underwater Wet Arc Welding of TMCP Steelplate (TMCP강의 습식수중 아크용접부의 냉각특성 개선에 관한 연구)

  • 김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.113-124
    • /
    • 1992
  • The offshore industry created a need for quality wet weld repairs. Wet welding is a fast method of repair providing sound, structural quality welds. It requires less support equipment than a similar underwater dry weld repair or the alternative mechanical connections. Compared to welds made in air, underwater wet welds are plagued by increased hardness due to rapid quenching by the surrounding water. In this paper is described the experimntal study of improving the cooling rates of wet welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows : By shielding around weld arc surrounding, the cooling rates resulting from wet welds on TMCP steel plate could be lower than that of nonshielded wet welds and the fesibility on high quality of mecanical properties of wet weld on TMCP steel plate was carried out with shielded weld arc surrounding.

  • PDF

Experiment of frost growth on the parallel plates in the condition of laminar and low humidity (층류유동 저습도 조건에서의 평행평판형 냉각판 서리성장 실험)

  • 한흥도;노승탁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.440-447
    • /
    • 1999
  • The frosting characteristics on the vertical parallel plates with three cooling plates were experimentally investigated. The experimental parameters were the cooling plate temperature, the air humidity, the air temperature, the air Reynolds number, and the location. The frosting conditions were limited to air temperatures from 10 to $15^{\circ}C$ , air Reynolds numbers from 1600 to 2270, air humidity ratios from 0.00275 to 0.0037kgw/kga and cooling plate temperatures from -10 to $-20^{\circ}C$. Frost growth and density toward the front of the plate were more thick and dense than toward the rear. Frost growth increased with decreasing plate temperature and increasing humidity. In the conditions of the laminar flow, dew point below $0^{\circ}C$and non-cyclic frosting period, frost thickness increased with increasing air temperature. The reason of increasing frost thickness with increasing air temperature was sublimation-ablimation process. The average growth thickness along the locations showed little dependence on the Reynolds numbers.

  • PDF

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint (압력감응페인트를 이용한 평판에서의 막냉각 계수 측정)

  • Park, Seoung-Duck;Lee, Ki-Seon;Kim, Hark-Bong;Kwak, Jae-Su;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-72
    • /
    • 2008
  • The film cooling effectiveness on a flat plate measured by pressure sensitive paint technique. Six film cooling hole were fabricated on a flat plate with 30 degree angle with respect to the surface and three blowing ratios of 0.5, 1, and 2 were tested. Results showed that PSP technique successfully evaluated the distribution of film cooling effectiveness and showed similar results with references. The film cooling effectiveness near the film cooling holes was higher for lower blowing ratio case. As the blowing ratio was increased, the film cooling effectiveness near the film cooling hole decreased due to the lift off of the coolant. At far downstream, the film cooling effectiveness for higher blowing ratio was higher due to the coolant reattachment.

Temperature Control of the Aluminum Plate using Peltier Element (펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • 전원석;방두열;최광훈;권대규;김남균;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.764-767
    • /
    • 2004
  • This paper present the temperature control of aluminum plate using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is asserted to Peltier element, it absorbs heat from low temperature side and emits to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with ON/OFF control scheme and fan ON/OFF. As the result of experiments, it is proper to act fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 100sec to increase to 7$0^{\circ}C$ and drop to 35$^{\circ}C$ of aluminium plate temperature and about 90sec to increase to 7$0^{\circ}C$ and drop to 4$0^{\circ}C$ in ambient temperature 3$0^{\circ}C$ while fan is on only in cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier element to heating and cooling.

  • PDF

Cooling Performance of Thermoelectric Module with Air-Cooled Heat Exchanger Fins (공랭식 열교환핀이 부착된 열전모듈의 냉각 성능에 관한 연구)

  • Shin, Jae-Hoon;Han, Hun-Sik;Kim, Yun-Ho;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • Thermal performance of louver fin and plate fin in a thermoelectric cooling system with a duct-flow type fan arrangement is analytically evaluated. The thermoelectric cooling system consists of a thermoelectric module and two heat exchanger fins. The analytic results show that the optimized louver fin has lower thermal resistance than plate fin. The COP and heat absorbed rate of the thermoelectric cooling system with optimized louver fins are 10.3% and 5.8% higher than optimized plate fins, respectively.

RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate (냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리)

  • Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Young-Hwa;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.