• Title/Summary/Keyword: Cooling Oil

Search Result 367, Processing Time 0.022 seconds

Effect of Cathodic Protection on Erosion-Corrosion Control in Alloy Metals of Marine Bearing (舶용 베어링 합금재의 침식-부식억제에 미치는 음극방식의 효과)

  • 임우조;이진열
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • When marine lubricating oil began to be emulsified and oxidized through ingressive water that have leaked from cooling pump seal systems, cooler, purifier system and piping system, the cavitation erosion-corrosion in alloy metals of bearings remains to the various troublesome problem at effective engine performance. Therefore, applied the cathodic protection to the control test of cavitation erosion-corrosion, and appointed the marine system oil containing 3% sea water as test environments, with different conductibility. Also, used the piezoelectric vibrator with 20 KHz, 24 $\mu$m as the cavity generation apparatus, and examined the weight loss, potential value, current density etc. in specimens with those condition. According to this testing data, investigated influence of cathodic protection on the control characteristics of cavitation erosion-corrosion, and will serve those as an elementary design data of marine bearing.

Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston (LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.

Thermal Characteristics Analysis of a High-Speed HMC Spindle System (초고속 HMC 주축계의 열특성 해석)

  • 김석일;김기상;김기태;나승표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.441-446
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm (50,000rpm급 초고속 주축계의 정적/동적/열적 특성 해석)

  • 김석일;조재완;이원재;이용희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.494-499
    • /
    • 2003
  • This paper concerns the static, dynamic and thermal characteristics analysis of a high-speed spindle system for horizontal machining centers with 45mm x50,000rpm. The spindle system is designed based on the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The structural and thermal analysis models of spindle system are constructed by the finite element method. The static and dynamic characteristics are estimated based on the static deformation, modal parameter, mode shape and frequency response function, and the thermal characteristics are estimated based on the temperature rise, temperature distribution and thermal deformation. The analysis results illustrate that the designed spindle system has excellent structural and thermal stabilities

  • PDF

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

Calculation of Heat Loads and Temperature Distribution for the HTS Termination Current Lead (HTS 단말 전류도입선 형상에 대한 온도분포 및 열부하 계산)

  • 조승연;사정우;김도형;김동락;김승현;양형석
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.36-39
    • /
    • 2003
  • HTS (High Temperature Superconducting) cable termination current lead has been designed based on simplified boundary conditions such as fixed temperature at both end and sdiabatic/convection in the side wall. However, in the real situation the current lead is enclosed with insulators and exposed to insulation oil and L$N_2$. Therefore it is necessary to consider them for the proper current lead design. In this paper, several important design parameters were chosen and their effect on the temperature distribution and heat loads on the current lead has been investigated. It was found that current lead has to be 2 stage to reach the minimum temperature requirement of insulation oil and insulator is required to reduce the cooling capacity of cryogenic system.

  • PDF

An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission (파워시프트 변속기 유압클러치시스템의 해석적 연구)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

Electrical Conduction Properties of Synthetic Fluids (합성절연유의 전기전도특성)

  • 조경순;최봉철;이종필;이수원;신현택;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.294-297
    • /
    • 1997
  • A study has been carried out electrical conduction properties of synthetic fluids No. 2 of KS class VII used for insulating and cooling the power device. BTA(Benzotrizole) as the streaming electrification suppressant additive is added to the oil, and the change of physical and electrical properties due to different BTA concentration is investgated. From the result of FTIR spectrum, it is confirmed that the absorpption peak in wavenumber 3400-3450[cm$\sub$-1/] is smaller and disappered by adding BTA to the oil. It is considered that the effective content of BTA is about 10[ppm] from the result of electrical conduction experiment.

  • PDF

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • Kim Seok-ll;Cho Jae-Wan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.30-37
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.