• Title/Summary/Keyword: Cooling Cycle

Search Result 639, Processing Time 0.029 seconds

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Type 2 Absorption Cycle to Transport Energy in the Long Distance for District Cooling Application (지역냉방 적용을 위한 LNG냉열 장거리 수송용 제 2종 흡수식 시스템)

  • Cho Young Kyong;Kim Jin-Kyeong;Oh Min Kyu;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.250-255
    • /
    • 2005
  • The objective of this paper is to develop a new energy transport system for district cooling application by using type 2 absorption cycle. Cold energy from the LNG storage system is utilized as the cooling source of the condenser and the rectifier. The pressures of the system, UAs of the evaporator and the desorber, and the inlet temperatures of the refrigerant to each component are considered as the key parameters. The results show that UA of the evaporator is more dominant parameter on COP than that of the desorber and the optimum system pressure for the demand side is estimated as 525 kPa. For the present system, it is recommended that the refrigerant inlet temperature of the evaporator be lower than $4.3^{\circ}C$ for long-distance transportation. It is concluded that the cold energy from the LNG storage system can be effectively applied to the long-distance transportation system for district cooling application with the type 2 absorption cycle. The optimum operation conditions are also predicted from the parametric analysis.

A Study on automatic optimization of cooling circuit design in injection mold (사출금형 냉각회로의 최적설계자동화에 관한 연구)

  • Chang, H.K.;Jung, H.W.;Lee, Y.J.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.262-265
    • /
    • 2007
  • Cooling circuit of injection mold affects part quality and cycle time of injection molding process. Examination on mold cooling circuit is usually omitted in part design stage because cooling circuit is designed in the mold design stage. It is desirable to examine mold cooling circuit with respect to part quality in the part design stage. In order to make the examination process convenient and fast, cooling circuit design should be automated without intervention of skilled designer. In this study, optimization of cooling circuit design is automated with commercial softwares; Visual DOC and Moldflow MPI. Effect of initial value for optimization is examined for the optimization result.

  • PDF

Performance Test for the Performance Reliability of the Heat Pipe for Cooling Power Semiconductors (전력반도체 냉각용 히트파이프의 성능안정성 파악을 위한 성능시험)

  • 강환국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2004
  • The heat pipe for cooling power semiconductor is required no performance changing during the life cycle up to 20 years. For the long reliable performance of the heat pipe, my reasons that has possibility to generate non condensable gases we not allowed. In this research, the maximum heat transport rate and operation characteristics that are related to various geometric and thermal conditions are carried out. Also the test items, specifications and methods to guarantee the long life cycle of the heat pipe for power semiconductor cooling device are provided and the tests are performed.

A study on curvature radius affects condition of injection molding (사출성형조건이 곡율반경에 미치는 영향에 관한 연구)

  • Shin, Nam-Ho;Choi, Suk-Jong;Lee, Eun-Jong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • In this research, jar die of cosmetic products which is difficult to produce variously was developed and can be obtain the productivity improvement by flexibility with two system which can control the die temperature. Flow analysis of jar was performed to find out the curvature radius of parts. In order to reduce thickness of jar, cycle time, deformation, uniform curvature of internal jar was maintained by rapid cooling. In external of dies, cooling channel, injection molding condition, die temperature control system were researched to make dies low temperature.

  • PDF

A Study on the Energy Storage System Using Air Source Heat Pump for Heating and Cooling (공기 열원을 이용한 축열식 냉난방 시스템 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Seo, Jeong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1125-1130
    • /
    • 2006
  • An air source heat pump system producing the ice and water storage energy for cooling and heating of building has been proposed. Cycle design and simulation considering energy balance between heating and cooling capacity has been carried out. The roles of the capacity controlled compressor, refrigerant heating device and air preheating are investigated in detail. System control logic for meeting the predetermined heating capacity when the system is operated at cold climate condition is suggested. Some anticipated problems of the proposed system are also described.

  • PDF

Cooling Characteristics of Refrigerated Vehicles with Heat Storage Materials in Thermobank (냉동탑차의 Thermobank 열저장 매체에 따른 냉각성능 비교)

  • Mun, Je-Cheol;Choi, Kwang-Il;Oh, Jong-Taek;Kim, Jai-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.810-814
    • /
    • 2009
  • A experimental study of a high efficiency transport refrigeration system for sliced-raw fish transportation is presented in this paper. The refrigeration system, that is powered by the car engine, is equipped with heat storage for reverse cycle-hot gas defrost; the stored heat is used during defrost cycle of the system. The heat storage has size $400(L){\times}350(W){\times}250(H)\;mm$ and made of fin-tube heat exchanger. System performance and container operating conditions are experimentally investigated and analyzed under cooling and defrosting conditions with heat storage materials. The water is faster about 30% than paraffin in cooling-down time of heat storage materials with load and unload.

  • PDF

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case (지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구)

  • Lee, Key Chang;Hong, Jun Hee;Kong, Hyoung Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.