• Title/Summary/Keyword: Cooling Circuit

Search Result 160, Processing Time 0.027 seconds

Heat Transfer Characteristics of Electronic Components in a Horizontal Channel According to Various Cooling Methods (다양한 냉각방법에 따른 수평채널 내 전자부품의 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.854-861
    • /
    • 2008
  • Heat transfer characteristics of protruding electronic components in a horizontal channel are studied numerically. The system consists of two horizontal channels formed by two covers and one printed circuit board which has three uniform protruding heat source blocks. A two-dimensional numerical model has been developed to predict the conjugate heat transfer. and the finite volume method is used to solve the problem. Five different cooling methods are considered to examine the heat transfer characteristics of electronic components according to the different cooling methods. The velocity and temperature of cooling medium and the temperature of the heat source blocks are obtained. The results of the five different cooling methods are compared to find out the most efficient cooling method in a given geometry and heat sources.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.

IC Thermal Management Using Microchannel Liquid Cooling Structure with Various Metal Bumps (금속 범프와 마이크로 채널 액체 냉각 구조를 이용한 소자의 열 관리 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • An increase in the transistor density of integrated circuit devices leads to a very high increase in heat dissipation density, which causes a long-term reliability and various thermal problems in microelectronics. In this study, liquid cooling method was investigated using straight microchannels with various metal bumps. Microchannels were fabricated on Si wafer using deep reactive ion etching (DRIE), and Ag, Cu, or Cr/Au/Cu metal bumps were placed on Si wafer by a screen printing method. The surface temperature of liquid cooling structures with various metal bumps was measured by infrared (IR) microscopy. For liquid cooling with Cr/Au/Cu bumps, the surface temperature difference before and after liquid cooling was $45.2^{\circ}C$ and the power density drop was $2.8W/cm^2$ at $200^{\circ}C$ heating temperature.

A Study on the Optimum Cooling Condition of the Underground Power Transmission Cable Equipped with a Separate Pipe Cooling System (간접냉각이 이용된 지중송전케이블의 적정냉각조건에 관한 연구)

  • Park, M.H;Che, G.S.;Seo, J.Y.;Kim, J.G.;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-276
    • /
    • 1992
  • The transmission current in a power cable is determined under the condition of separate pipe cooling. To this end, the thermal analysis is conducted with the standard condition of separate pipe cooling system, which constitutes one of the underground power transmission system. The changes of transmission current in a power cable with respect to the variation of temperatures and flow rates of inlet cooling water as well as the cooling spans are also determined. As a consequnce, the corresponding transmission current is shown to vary within allowable limit, resulting in the linear variation of the current for most of the cable routes. The abrupt changes of current, however, for the given flow rate of inlet cooling water in some cooling span lead to the adverse effects on the smooth current transmission within the underground power transmission system. In practice, it is expected that the desinging of the separate pipe cooling system in conjunction with the evaluation of system capacity should take into account the effects of design condition on the inlet cooling flow rate.

  • PDF

Improvement of Water Cooling System of a Small Diesel Engine (농업용(農業用) 소형(小型)디젤기관(機關) 냉각(冷却)시스템의 개선(改善)에 관(關)한 연구(硏究))

  • Kim, S.R.;Myung, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.3-14
    • /
    • 1993
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors being influenced engine performance, factors of radiator, of capacity of cooling water, and of efficiency of cooling fan were considered as the major factors in this study. Because diesel engine being used to power tiller are scarce of cooling water, it is over-heated in time of rated power. Therefore, a experiment was performed to determine the capacity of cooling water of engine with circuit system of cooling water adhered.

  • PDF

Development of cooling system with sub-cooled nitrogen for DC Reactor of 6.6 ㎸-200A class HTS fault current limiter (6.6 ㎸-200A급 HTS 한류기 DC Reactor용 과냉질소 냉각시스템의 개발)

  • 김형진;권기범;강형구;배덕권;안민철;정은수;장호명;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.171-175
    • /
    • 2003
  • The sub-cooled nitrogen cooling system at 65 K with GM cryo-cooler is developed for cooling down the DC reactor of 6.6 ㎸-200 A class HTS Fault Current Limiter(SFCL). The sub-cooled nitrogen cooling is more economic than saturated nitrogen cooling, because the length of HTS wire is reduced in the same capacity, as well as, more stable. The cooling system with the GM cryo-cooler installed on the cryostat is not only compact but also efficient for energy saving. In the nitrogen vessel, after evacuating with vacuum pump to saturated nitrogen at 65 K, sub-cooled nitrogen at 65 K is made by putting in gas helium to 1 atm. During the short circuit test occurring the fault current of 1000 A, the sub-cooled nitrogen cooled DC reactor for SFCL is kept the state of sub-cooled nitrogen at 65 K.

  • PDF

The stable design of radiant heat inside PCB circuit board device (PCB회로 보드장치내의 안정적 방열설계를 위한 연구)

  • Won, Jong-Wun;Lee, Jong-Hwi
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • In this study, the heat flow analysis compatible commercial code CFX 11 was used to develop the structure inside PCB circuit board devices, which could stable radiant heat as well as the cooling device within it. In case of modifying the arrangement of electronic parts on the PCB inside the multi channel temperature measurement board devices, radiant heat effects did not show a rising tendency, whereas the overall temperature went down in case of installing the vents in the outer case of PCB circuit board devices. In terms of installation location, it was the most appropriate to install it on the electronic parts with no heat. Besides, in case of mounting the fan as a cooling device by considering various user environments for multi channel temperature measurement board devices, the radiant heat effects were shown higher than in case of installing the vents, and the middle sections were the most appropriate to its installation location. In case of changing the wind quantity of the fan from its selected installation location, the best radiant heat effects were shown at high speed as expected.

A Study on the Application of Thermoelectric Module to the Electric Telecommunication Equipment Cooling (열전소자를 이용한 전자 통신장비 냉각에 관한 연구)

  • Kim, Jong-Soo;Im, Yong-Bin;Kong, Sang-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • Cooling technology has been a vital prerequisite for the rapid, if not explosive, growth of the electronic equipment industry. This has been especially true during the last 20 years with the advent of intergrated circuit chips and their applications in computers and related electronic products. The purpose of this study is to develop a telecommunication equipment cooling system using a thermoelectric module combined with cooling fan. Thermoelectric module is a device that can perform cooling only by input of electric power. In the present study, the cooling package using the thermoeletric module has been developed to improve the thermal performance. The cooling characteristics of the electronic chip was placed into the subrack and it can be rapidly assembled or disassembled in the equipment rack. As a preliminary experiment, the cooling performances between a conventional way using a cooling fin and a proposed method applying the thermoelectric module was comosed and analyzyed. The cooling performance at a simulated electronic component packaging a thermomodule operated well.