• 제목/요약/키워드: Cooling Air Velocity

검색결과 232건 처리시간 0.032초

An Experimental study on heat transfer of a falling liquid film in air channel flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun;Lee, Dae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제32권5호
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

Comparison of Performance in CO2 Cooling System with an Ejector for Various Operating Conditions (다양한 운전조건에서 이젝터를 적용한 CO2 냉동기의 성능비교)

  • Kang, Byun;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제23권7호
    • /
    • pp.505-512
    • /
    • 2011
  • Recently, many researchers have analyzed the performance of the transcritical $CO_2$ refrigeration cycle in order to identify opportunities to improve the system energy efficiency. The reduction of the expansion process losses is one of the key issues to improve the efficiency of the transcritical $CO_2$ refrigeration cycle. In this study, the analytical study on the performance characteristics of $CO_2$ cycle with an ejector carried out with a variation of outdoor temperature, gascooler inlet air velocity, evaporator inlet air velocity, and evaporator inlet air temperature. As a result, the system performance could be improved over 85% by using an ejector for various operating condition because of the reduction of compressor work. Moreover, the cooling capacity increased about 18% for variable outdoor condition. Therefore, the high performance of an ejector system could be maintained for wide operating conditions and system reliability could be improved compared to that of a basic system.

Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber (공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법)

  • Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제6권4호
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제29권9호
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

Heat Transfer and Fluid Flow Evaluation of Radiator for Computer Cooling (컴퓨터용 라디에이터의 열전달 및 유동특성 평가)

  • Cha, Dong-An;Kwon, Oh-Kyung;Yun, Jae-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1153-1158
    • /
    • 2009
  • The performance of louver-finned flat-tube and fin & tube radiators for computer CPU liquid cooling were experimentally investigated. In this study, 7 samples of radiators with different shape and pass number (1, 2, 10) were tested in a wind tunnel. The experiments were conducted under the different air velocity range from 1 to 4 m/s. The water flow rate through a pass was 1.2 LPM. Inlet temperatures of air and water were $20^{\circ}C$ and $30^{\circ}C$ respectively. It was found that the best performance was observed in the louver-finned flat-tube sample considering pressure drop and heat transfer coefficient.

  • PDF

A Study on the Thermal Performance of Radiator for Computer CPU Cooling (컴퓨터 CPU 냉각용 라디에이터의 열성능에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.258-263
    • /
    • 2007
  • The performance of louver-finned flat-tube radiators for computer CPU liquid cooling were experimentally investigated. In this study, 5 samples of louver-finned flat-tube radiators with different width size (19mm, 24mm), tube hole (1, 9) and pass number (1, 2, 5) were tested in a wind tunnel. The experiments were conducted under the different air velocity ranging from 1 to 5 m/s. The water flow rate through a pass was 1.7 LPM. Inlet temperatures of air and water were $20^{\circ}C$ and $30^{\circ}C$ respectively. The results showed that the best performance in the 24mm sample considering pressure drop and heat transfer coefficient.

  • PDF

Optimization of Nozzle Arrangement in a Liquid Direct Contact Cooling System : Constant Inlet Flowrate Analysis (액체식 직접 접촉 냉각장치의 노즐배열 최적화 : 정풍량 해석)

  • Kim Won-Nyun;Kim Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제18권5호
    • /
    • pp.402-409
    • /
    • 2006
  • For the design of a liquid direct contact cooling system, thermal and hydraulic analysis has been carried out. Well-known Zukauskas correlations are used to estimate the Nusselt number between the liquid refrigerant columns and the inlet airflow. The inlet air velocity is set at a typical value used in an actual showcase. For a constant column number, the best nozzle arrangement is determined for the maximum heat transfer. Heat transfer increases as the transverse pitch of the refrigerant column decreases. Among all the cases dealt with in the present study, the staggered arrangement with 140-columns of $14{\times}10$ shows the best thermal peformance and the expected temperature drop is $27.8^{\circ}C$. The effect of downstream refrigerant columns on the overall thermal performance is investigated as well.

Air Side Heat Transfer Charactieristics of Tension Wound Transverse Fin with Minichannel (장력 감김으로 부착된 가로방향 휜-미니채널의 공기측 열전달 특성)

  • Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.701-706
    • /
    • 2005
  • Pipes, tubes. and tubular sections with external transverse high fins have been used extensively for heating cooling, and degumidifying air and other gases. This work was performed to investigate an air side heat transfer charactieristics of minichannel with tension wound transverse fin. This estimate was confirmed conversion heat capacity the air side surface area enlargement and heat transfer charactieristics performed available inlet tube side hot water mass flux or outlet tube side air frontal air velocity. The most suitable tension wound transverse finned minichannel was measured extremely low in air side pressure drop and fin effectiveness $3.3\~4.4$. The pressure drop $0.9\~2.8Pa$ was ranged frontal air velocity $0.5\~1.2m/s$. It is also appeared that heat transfer in air side could be better conversion heat area which has been increased $330\%$ of heat capacity compared with the bare tube.

Ionic Wind Generator With Third Electrode (3전극형 이온풍 발생장치)

  • Hwang, Deok-Hyun;Jung, Hoi-Won;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 합동춘계학술대회 논문집 전기물성,응용부문
    • /
    • pp.139-140
    • /
    • 2008
  • Cooling systems for electronic equipments are becoming more important. Cooling technologies using natural and forced convection are limited and operated in very low efficiency. A corona discharge is utilized as the driving mechanism for anair pump, which allows for airflow generation with low noise and no moving parts. However they do not enhance the flow rate and overcome the control mechanism of the pump. In this study a point-mesh type air pump, with a third electro de installed near the corona point, has been proposed and investigated by focusing on elevating the ionic wind velocity and power yield. As a result, the significantly enhanced ionic wind velocity and tremendously increased power yield can be obtained with the proposed air pump system.

  • PDF