• 제목/요약/키워드: Cooling Air Velocity

검색결과 232건 처리시간 0.02초

제어압력 및 수용액의 농도가 관내 연속제빙에 미치는 영향 (Influence of Control Pressure and Concentration of Water Solution at Continuous Ice Making in a Tube)

  • 박기원;오후규
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1236-1244
    • /
    • 2001
  • In the present study, the possibility of continuous slurry ice making using flowing water solution in a cooled tube has been investigated. The experiments were carried out at various concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in a tube. As a result, four types of operating conditions, that is super-cooling, continuous ice making, intermittent ice making and ice blockage, were classified. And it was found that the critical condition for the continuous ice making was acquired as a function of these experimental parameters.

  • PDF

PHP를 결합한 알루미늄 히트싱크의 냉각성능에 관한 연구 (A Study on Cooling Performance of Aluminium Heat Sink with Pulsating Heat Pipe)

  • 김종수;하수정;권용하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1016-1021
    • /
    • 2011
  • 열전소자를 이용한 냉각 장치에 있어서 열전소자발열부측의 제거 열량은 제품의 성능 및 적용범위를 결정하는 주요변수가 되므로 히트싱크의 열저항을 최소화 할 수 있는 최적 조건의 히트싱크 설계를 필요로 한다. 발열부가 작고 상대적으로 히트싱크 면적이 커서 히트싱크 전체면으로 열확산이 필요한 경우 히트싱크의 방열 성능을 향상시키기 위하여 작동유체 R-22의 진동형 히트파이프를 이용하여 열전소자의 발열부측의 발열량(30W, 60W, 80W, 100W)과 공기 유속(1~4 m/s)에 따른 히트싱크의 열저항 실험 및 수치해석 결과와 비교 분석을 통해 히트싱크의 냉각 성능을 향상 시킬 수 있는 방법을 연구하였다.

Vertical Profiles of Meteorological Parameters over Taegu City

  • Ahn, Byung-Ho;Kwak, Young-Sil
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제22권1호
    • /
    • pp.24-32
    • /
    • 1994
  • A special upper-air observation including airsonde and pibal observations was performed to investigate the characteristics features of the vertical distribution of the meteorological elements over Taegu on a selected clear day of each season from October 1991 to August 1992. The diurnal and seasonal variations of the vertical profiles of air temperature and mixing ratio were obtained from airsonde observations and wind speed and direction from pibal observations. The results of these special upper-air observations are as follow : The diurnal variation of the vertical distribution of air temperature reveals the characteristic features associated with the atmospheric boundary layer. All case days, except for the summer season, show upper-level inversion layer which influenced by surface high, and surface inversion layer produced by radiative cooling. The diurnal variation of mixing ratio shows the maximum vale at 1500 LST in both the upper and low levels, and is larger on the lower level than the upper level. The mixing ratio of the lower level is larger than that of the upper level. On the average the mixing ratio decrease with the height, and is the wettest on the summer case day and the driest on the winter case day. The diurnal variation of the wind velocity and direction are variable in the lower level with time and height, while they are steady in the upper level. On the average, the wind direction is southerly or southeasterly for the summer case day, westerly or northwesterly for the spring and fall case days, and northerly or northwesterly for the winter case day.

  • PDF

동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구 (An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method)

  • 김정식;임승택;오철
    • 한국항해항만학회지
    • /
    • 제37권2호
    • /
    • pp.129-135
    • /
    • 2013
  • 동결농축폐수처리의 기술은 열역학적 효율이 높고 에너지 소비량이 작아 중소규모로 적합하며, 용수 재활용과 융해열의 냉열 재이용이 가능한 장점을 가지고 있다. 본 연구에서는 폐수 처리효율이 높은 동결농축폐수처리장치의 개발을 위해 수직원관 형태의 제빙관을 대상으로 염화나트륨수용액을 이용한 기초 실험을 통해 냉각면 온도, 기포 분사 방법에 따른 분리 성능을 확인 후 대표적 중금속인 Pb, Cr 수용액을 대상으로 냉각면 온도, 기포 직접 분사, 과냉각을 방지하기 위한 용질을 포함하지 않은 초기 빙층 두께의 영향에 따른 중금속 분리 성능을 실험 통해 확인하였다. 실험결과 두 수용액에서 모두 냉각면의 온도가 낮을수록 동결층의 성장속도가 빨라지고 용질의 분리효율이 저하되었다. 기포를 분사하는 방법 중에는 환모양의 노즐을 통해 동결계면에 직접 분사하는 방법이 원통벽면을 통해 간접 분사하는 것 보다 분리효율이 높게 나타났으며, 초기 빙층의 두께에 따른 실험에서는 1mm 보다는 5mm의 두께에서 분리효율이 더 우수한 것으로 나타났다.

연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구 (Numerical study on the thermal performance characteristics of the stack system for FCEV)

  • 이호성;이무연;원종필
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.3708-3713
    • /
    • 2015
  • 본 연구의 목적은 연료전지 자동차의 스택 시스템의 열적 특성을 파악하기 위하여 상용 수치 해석 프로그램을 이용하여 열전달 성능을 해석적으로 고찰하였다. 이를 위하여 연료전지 자동차가 일반도로 및 등판도로 등 주행 특성에 따른 스택 열관리 시스템의 냉각 특성과 에어컨의 작동 여부 등 운전 특성에 따른 스택 열관리 시스템의 냉각 특성을 고찰하였다. 스택 라디에이터로 유입되는 공기 유속이 증가함에 따라 모든 냉각수 유량조건에서 열전달 성능은 향상되었다. 공기 유속이 2 m/s에서 10 m/s로 증가함에 따라 스택 라디에이터의 열전달 성능은 냉각수 유량 20 l/min에서 105.3% 증가하였고, 냉각수 유량 120 l/min에서 221.3% 증가하였다. 스택 라디에이터는 가혹조건인 등판 각도 8% 및 속도 50 km/h에서 냉각수 입구 온도차 $9.45^{\circ}C$로 일반조건인 등판 각도 0% 및 속도 120 km/h에서 냉각수 입구 온도차인 $5.1^{\circ}C$보다 85.3% 증가했다. 또한, 연료전지 자동차가 가혹조건인 등판 주행시 에어컨 시스템을 작동할 경우 스택의 안정적 작동을 허용하는 한계 온도인 $70^{\circ}C$를 초과할 수 있다.

판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성 (Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier)

  • 전동순;이해승;김선창;김영률
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.

루버를 이용한 대형공장 내부 자 연환기유동 개선에 관한 연구 (Improvement for Natural Ventilation Flow inside a Large Factory Building Using Louver-t ype Ventilator)

  • 강종훈;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.705-706
    • /
    • 2008
  • When heat generated inside a large factory building is not discharged due to a stagnant flow, the working environment of workers becomes worse and the cooling of high-temperature products such as hot-rolling coils is delayed. To investigate the natural ventilation inside a large factory building, experimental studies were carried out using wind-tunnel tests. The scale-down factory building models were placed in an atmospheric boundary layer (ABL) and the mean and fluctuating velocity fields were measured using a particle image velocimetry (PIV) technique. For the prototype factory model, the outdoor air is only entrained into the factory building through the one-third open windward wall, and stagnant flow is formed in the rear part of the target area. In order to improve the indoor ventilation environment of the factory building, three different louver-type ventilators were attached at the upper one-third open windward wall of the factory model. Among the three louver ventilators tested in this study, the ventilator model #3 with the outer louver (${\theta}_o$ = 90$^{\circ}$) and the inner louver (${\theta}_i$ = -70$^{\circ}$) was found to improve the natural ventilation inside the factory building model effectively. The flow rate of the entrained air was increased with aligning the outer louver blades with the oncoming wind and guiding the entrained air down to the ground surface with elongated inner louver blades.

  • PDF

냉동탑차용 냉장시스템의 착상 및 무착상 상태에서의 성능변화에 관한 해석적 연구 (Numerical Study of Performance Variation Under Frost and Non-frost Condition of Refrigerating System in the Refrigerator Truck)

  • 김상훈;명치욱;조홍현
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.733-740
    • /
    • 2011
  • To analyze the cooling performance in the refrigerator truck according to frost growth, the analytical model of refrigeration system was developed under frost and non-frost condition using EES. The system performance was analyzed with outdoor temperature, storage temperature, outdoor front air velocity and compressor speed in order to investigate the system performance characteristics with operating conditions. Besides, the system performance under frost condition was compared with that under non-frost condition. As a result, the frost thickness was 0.9 mm when the refrigerating capacity of frost condition was decreased by 30%. The maximum of the system COP was shown at compressor speed of 1500 rpm for non-frost and frost condition, simultaneously. The performance under frost condition was more sensitive to the operating condition compared to that under non-frost condition.

수평 실린더에서의 서리 생성에 대한 환경 변수들의 영향 (The Effect of Environmental Parameters on Frost Formation on a Horizontal Cylinder)

  • 이윤빈;류인상;노승탁
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.253-260
    • /
    • 2002
  • It is known that frost formation on surfaces of the heat exchanger seriously affects the performance of the refrigeration system. Accordingly, defrosting should follow, and effective defrosting is possible only when both analytic tools and comprehensive experimental data on frost formation are assailable. An experimental investigation was undertaken to characterize the effect of environmental parameters on frost formation on a horizontal cylinder in cross uniform flow. Several experiments were carried out with various environmental parameters such as inlet air temperature, inlet air humidity, air velocity and cooling surface temperature. Frost thickness, mass, surface temperature and cylinder inner and outer temperature were measured at front and rear positions of the cylinder. Thickness, mass, density, and effective thermal conductivity of the frost layer were obtained from measured data and effects of environmental parameters on the frost formation were analyzed. Data from experiments were correlated using dimensionless variables.

차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구 (Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort)

  • 김윤기;양장식;백제현;김경천;지호성
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.