• 제목/요약/키워드: Coolant heat source

검색결과 33건 처리시간 0.023초

무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구 (An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화 (Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating)

  • 권익환;강도원;김동섭;김재환
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

저공해 중소형 디젤차량 히트펌프 제어 (Control of Heat Pump for Low Emission Diesel Engine)

  • 박병덕;이원석;원종필;권순익
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.379-384
    • /
    • 2002
  • As automotive diesel engines adopt the direct injection method for a lower level of the exhaust emission and a higher fuel efficiency, the maximum temperature of engine coolant decreases. Consequently, the total available heat source from the engine coolant decreases over 35%. However, the heating source of air-conditioning system in automobiles depends on the hot engine coolant completely, so that it is nearly impossible to control air conditioning in heating season. Therefore, the present study has been carried out to develop the air conditioning system for the high efficient heat pump type using the HFC-134a. Especially, the air conditioning system of heating has been developed at a beginning stage, when it has low heat source from small and medium sized diesel recreation vehicles. To develop a control logic system for air conditioning system which is a heat pump type with a heat recovery exchanger, its cycle characteristics has been investigated according to the opening of LEV at a bench system.

  • PDF

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구 (Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles)

  • 우형석;안재환;오명수;강훈;김용찬
    • 설비공학논문집
    • /
    • 제25권4호
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구 (Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

EV 상용차용 히트펌프 시스템 냉방 운전 특성에 관한 연구 (A Study on Performance Characteristics of Heat Pump System on Cooling Mode for Light-duty Commercial Electric Vehicles)

  • 전한별;김정일;원헌주;이호성
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.69-75
    • /
    • 2019
  • 본 연구의 목적은 EV 경상용차에 적용되는 히트펌프 시스템에 대한 냉방 성능 특성을 실험적으로 분석하는 것이다. EV 경상용차가 운전되는 냉방 운전조건인 외기온도 35 ℃, 내기온도 25 ℃ 상황에서, 히트펌프 시스템의 냉방 특성을 분석하고자, 냉각수의 온도조건, 전동식 압축기 회전수 조건 변화에 대해서, 실험을 진행하였고, 그 결과를 분석하였다. 전동식 압축기 회전수가 증가할수록 냉방 성능이 평균 8.0 %가 증가하였고, 전동식 압축기 소비전력은 27 %가 증가하여서, 시스템 효율은 16.4 %가 감소하는 결과를 보여주고 있다. 전자장비 냉각을 위한 냉각수의 폐열을 활용하기 위하여서, 냉매랑 냉각수가 열교환 하는 칠러를 본 시스템에 적용하였다. 칠러에 적용되는 냉각수의 온도를 35 ℃에서 55℃로 변화시켰을 때, 응축 열원의 증가로 인하여서, 시스템 효율이 평균적으로 18.2 %가 떨어지는 결과를 보여주고 있다. 냉각수 유량 변화 측면에서, 운전 조건을 변화시켰지만, 냉방 성능에는 큰 변화를 보이고 있지 않았다. 향후, 냉각수 폐열을 사용하여서, 히트펌프 시스템에 대한 난방 성능 향상을 위한 연구가 필요한 상황에서, 관련 연구에 추가 할 예정이다.

Isothermal Characteristics of a Rectangular Parallelepiped Sodium Heat Pipe

  • Boo Joon Hong;Park Soo Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1044-1051
    • /
    • 2005
  • The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were inves­tigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was $140\;m\;(L)\;{\times}\;95m\;(W)\;{\times}\;46 m\;(H)$ and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be $114^{\circ}C$ for 850 W thermal load and $100^{\circ}C$ coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

내연기관 실린더 헤드 조립체 내부의 냉각수 유동 및 열전달에 관한 연구 (NUMERICAL STUDY ON THE COOLANT FLOW AND HEAT TRANSFER IN THE CYLINDER HEAD ASSEMBLY OF AN INTERNAL COMBUSTION ENGINE)

  • 서용권;허성규;김병휘
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.9-17
    • /
    • 2009
  • In this study we investigated the characteristics of fluid flow and heat transfer within a coolant passage in the cylinder head assembly of an internal combustion engine by using a commercial CFD code, CFX The complex coolant passage of the cylinder head assembly was modelled by suitable choice of a grid system and careful attention was paid in the construction of meshes near the walls where significant cooling occurs. To treat the simultaneous heating and cooling of the combustion walls we invented a methodology allowing a heat source within the solid wall and the convective cooling at the interface between the solid and the fluid. We managed to reproduce the experimental results by adjusting parameters appropriately. We have found that high temperature was concentrated at the surface of the cylinder jacket. It turned out that the effect of oil cooling from the piston head was unexpectedly significant. On the other hand the effect of cooling from the ambient air is almost negligible. The CFD method proposed in this study is believed to be useful in the early stage of the design of the engine-cooling system.