• 제목/요약/키워드: Coolant Temperature and Pressure

검색결과 233건 처리시간 0.022초

Thermal and Absorbing Performance in a Vertical Absorber

  • Cho, Keum-Nam;Kim, Jung-Kuk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.51-59
    • /
    • 2000
  • The purpose of the present study is to investigate the absorbing characteristics in a vertical falling film type absorber using LiBr-H$H_2O$ solution as working fluids with the concentration of 60 wt%. The experimental apparatus consists of an absorber with the diameter of 17.2 mm and the length of 1150 mm, a generator, an evaporator (condenser), a weak solution tank and a sampling trap device and so on. The parameters were the solution temperatures of 45 and 50$^{\circ}$C, coolant temperatures of 30 and 35$^{\circ}$C, and the film Reynolds numbers from 50 to 150. The pressure drop in the absorber increased as the solution and coolant temperatures decreased. The pressure drop in the absorber increased up to the film Reynolds number of 90, however, decreased at the film Reynolds number above 90. The maximum absorption mass flux was observed at the film Reynolds number of 90. Absorption mass fluxes increased as the coolant temperature decreased. Accordingly, absorption mass fluxes and heat transfer coefficients under the subcooled condition increased more than those under the superheated condition. It is claimed that heat transfer coefficients are deeply affected by the solution temperature more than the coolant temperature within the experimental range.

  • PDF

APR1400 IRWST Pool 온도분포 해석 (A Numerical Study on the IRWST Pool Temperature Distributionin in APR1400)

  • 강형석;배윤영;박종균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.813-820
    • /
    • 2001
  • The Safety depressurization System(SDS) of KNGR prevents RCS from overpressurization by discharging high pressure and temperature coolant through the I-sparger into the IRWST during an accident. If IRWST water temperature rise locally, around the sparger, beyond $200_{\circ}$2000 F by the discharged coolant, unstable steam condensation can cause large pressure load on the IRWST wall. To investigate whether this condition can be avoided for the design basis event IOPOSRV(Inadvertent Opening of one Pilot Operated Safety Relief Valve), the flow and temperature distribution of water in the IRWST is calculated by using CFX 4.3 computational fluid dynamic code. According to the results, since pool water temperature does not exceeds temperature limit within 50 seconds after the opening of one POSRV, it can be assured that the integrity of IRWST wall is maintained.

  • PDF

원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발 (Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube)

  • 강덕지;김환열;배윤영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

차세대원자로 재장전수조내의 유동장에 대한 수치해석적 연구 (A numerical study of the flow field in the IRWST of KNGR)

  • 강형석;김환열;윤주현;배윤영;박종균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.205-212
    • /
    • 1999
  • Safety Depressurization System of the Korean Next Generation Reactor prevents the Reactor Coolant System from over-pressurization by discharging the coolant with high pressure and temperature into the In-containment Refueling Water Storage Tank(IRWST) during an accident. If temperature in the IRWST rises above the temperature limit of $200\;^{\circ}F$ due to the discharged coolant, an unstable steam condensation may occur and cause large load on the IRWST wall. To investigate whether this condition can be reached or not for the design basis accident, the flow and temperature distributions of water in the IRWST wire calculated by using CFX 4.2 computer code. The results show that the local water temperature does not exceeds the temperature limit within the transient time of 5 seconds.

  • PDF

Corrugate 휜-관 현열 열교환기의 구조에 따른 공기측 열전달 및 압력손실 특성 (Characteristic of air-side sensible heat transfer and pressure drop on the corrugate fin tube heat exchangers)

  • 류준일;전창덕;이진호;남임우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.216-221
    • /
    • 2007
  • An experiment was carried out to investigate the effect of a coolant circuit arrangement on the heat transfer and air pressure drop of a fin-tube sensible heat exchanger with the corrugated fin surface. The air inlet temperature was set to $23^{\circ}C$,the relative humidity to 50% and the air inlet flow rate to 20, 22, $25m^3/min$, respectively. while the coolant temperature was set to $7^{\circ}C$, and the coolant mass flow rate to 10, 16, 22kg/min, respectively. Experiment showed that the exchanger having a diameter of 12.7mm with parallel circuit does better performance in sensible heat transfer and air pressure drop than those three of diameter of 12.7mm with a series circuit and that with diameter of 15.88mm with a parallel circuit.

  • PDF

미산란 기법에 의한 고압 6공 연료분사기의 분무형상에 대한 실험적 연구 (Experimental Study on Spray Structure of a High Pressure 6-Hole Injector by Mie Scattering Technique)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.878-883
    • /
    • 2008
  • The spray characteristics of a high pressure 6-hole injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while the propagation of fuel spray was restrained during the compression stroke by the increasing pressure and the upward moving piston. In additions, it was confirmed that the liquid fuel droplets existing at the sprays edges were vaporized by the increase of the coolant temperature.

추력 30톤급 연소기의 냉각 성능

  • 조원국;이수용;조광래
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.197-204
    • /
    • 2004
  • 30톤급 지상시험용 연소기의 재생냉각 유로의 설계를 수행하였다. 사용된 1차원 설계 프로그램은 NAL에서 보고한 고압 연소시험과 모비스 ECC엔진의 물냉각 성능 데이터와 비교하여 열특성 예측 성능을 검증하였다. 본 설계 조건과 유사한 고압에서의 열유속 예측 성능을 확인하였고 물냉각 성능 역시 참고문헌에서 제시하는 것과 동일한 수준의 정확성을 가지는 것으로 검증되었다. 열차폐 코팅 효과를 생략할 경우, 내벽의 최고온도는 약 720 K이 될 것으로 예상되며 냉각유체와 접하는 금속부의 온도는 코킹온도 이하일 것으로 확인되었다. 열차폐 코팅이 적용되었을 경우, 냉각유체 Jet-A1의 예상되는 온도상승은 약 100 K이다.

  • PDF

사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향 (Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding)

  • 최계광;홍석무;한성렬
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

응력부식균열을 고려한 고리 1호기 원자로냉각재계통의 배관 파손확률 평가 (Evaluation of Piping Failure Probability of Reactor Coolant System in Kori Unit 1 Considering Stress Corrosion Cracking)

  • 박정순;최영환;박재학
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.43-49
    • /
    • 2010
  • The piping failure probability of the reactor coolant system in Kori unit 1 was evaluated considering stress corrosion cracking. The P-PIE program (Probabilistic Piping Integrity Evaluation Program) developed in this study was used in the analysis. The effect of some variables such as oxygen concentration during start up and steady state operation, and operating temperature, which are related with stress corrosion cracking, on the piping failure probabilities was investigated. The effects of leak detection capability, the size of big leak, piping loops, and reactor types on the piping failure probability were also investigated. The results show that (1) LOCA (loss of coolant accident) probability of Kori unit 1 is extremely low, (2) leak probability is sensitive to oxygen concentration during steady state operation and operating temperature, while not sensitive to the oxygen concentration during start up, and (3) the piping thickness and operating temperature play important roles in the leak probabilities of the cold leg in 4 reactor types having same inner diameter.

  • PDF

직분식 전기점화 엔진에서 PLIF기법에 의한 성층 혼합기의 분포특성 연구 (Study on the Fuel Vapor Distribution of the Stratified Charge in a DISI Engine by PLIF Technique)

  • 김성수
    • 동력기계공학회지
    • /
    • 제12권6호
    • /
    • pp.64-69
    • /
    • 2008
  • The spatial fuel distribution of the stratified charge of a high pressure 6-hole injector was examined in a single cylinder optical direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF(Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played more effective role in the spatial fuel distribution of the stratified charge than the swirl flow during the compression stroke and the fuel distribution area increased due to the activation of the fuel vaporization by the increase of the coolant temperature. But, the increase of the fuel supplying pressure could not change the pattern of the fuel vapor distribution against the expectation.

  • PDF