• 제목/요약/키워드: Coolant Temperature

검색결과 764건 처리시간 0.027초

연료 전지 냉각판의 최적 설계 (A Study on the Optimization of Fuel-Cell Stack Design)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

초전도발전기의 냉각시스템 해석 (Analysis of the cooling system for a superconducting generator)

  • 김국원;정태은;신효철
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.446-453
    • /
    • 1997
  • The superconducting winding in rotor of a superconducting generator should be kept at extremely low temperature of 4-5 K to maintain the superconducting state. For this purpose the liquefied helium is used for the coolant and it is very important to analyze and design a cooling system making effective use of the coolant. In this paper, the typical heat exchanger of a superconducting generator with the flow passage is analyzed with regard to the thermal equilibrium. An experimental constant relevant to the flow condition in the flow passage is determined with heat exchange experiments in cryostat. Also a new heat exchanger with porous material is proposed and designed. Results of the numerical analysis for the temperature distributions for the torque tube and the coolant are reported and the efficiency of the heat exchanger is discussed from the viewpoint of amounts of coolant needed.

  • PDF

전자제어식 냉각시스템이 연비에 미치는 영향에 관한 연구 (A STUDY ON THE IMPROVEMENT OF FUEL ECONOMY BY OPTIMIZING AN ELECTRIC ENGINE COOLING SYSTEM)

  • 인병덕;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3001-3006
    • /
    • 2008
  • Recently, the internal combustion engines have focused on reducing both the CO2 emissions in order to cope with severe regulations for greenhouse effect. Therefore, various new technologies have been developed in many countries. Among them, the cooling system is spotlighted because it has great effect on fuel efficiency. However, the present engine cooling system is almost same as one of the 50 years ago. The needs for high performance and compact size make it important to improve engine cooling system, down-sizing and control method of coolant flow. Thus, low fuel consumption technology such as control and synthetic management of cooling system was necessary to satisfy with these needs. In this study, we applied electric thermostat to improve the fuel economy. The fuel consumption was compared after driving FTP-75 mode on both conditions which were with a conventional wax thermostat and with a electric thermostat. The coolant temperature of opening the electric thermostat is higher.

  • PDF

선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용 (Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine)

  • 김한상;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

고온/고압 환경 하에서 물로 윤활되는 그루브 저어널 베어링의 윤활 해석 (Lubrication Analysis of the Grooved Journal Bearing Lubricated with Pressurized High Temperature Water)

  • 이재선;박진석;김종인
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.105-108
    • /
    • 2002
  • Specially designed grooved journal bearings are installed in the main coolant pump for SMART (System-integrated Modular Advanced ReacTor) to support radial load on the rotating shaft. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and filled with circulating primary coolant which is pure water. The main coolant pump bearings are lubricated with this coolant without any other external lubricant supply. Because lubricating condition is too severe for this bearing to generate proper hydrodynamic film, investigation of lubrication characteristics of the journal bearing is important to satisfy life constraint of whole pump system, and the results will be applied to the analysis of dynamic characteristics of the shaft system. The bearing is made of silicon graphite which has self$.$lubricating effect. A lubrication analysis method is proposed for this vertically grooved journal bearing in the main coolant pump of SMART, and lubricational characteristics of the bearings are examined in this paper.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

차량용 헬리컬기어의 침탄 열처리 변형해석 (Analysis of Deformation of Automotive Helical Gear in Heat Treatment of Carburized Quenching)

  • 배강열;양영수;박병옥
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.84-91
    • /
    • 2010
  • Heat treatment with carburized quenching process is widely used for automotive helical gear to improve its surface properties of hardness and strength. However, the gear can be deformed with the process over the allowable tolerance, which possibly makes noise, vibration and heat problems in operation. In this study, deformation of helical gear during heat treatment of carburized quenching was analyzed with a numerical method, incorporating coupled calculations of thermal conduction, carbon diffusion, phase transformation and thermal stresses. With the analysis, the effect of coolant temperature in quenching on the deformation was investigated. The result of the analysis revealed that the higher the coolant temperature became, the more change of helix angle and the more compressive stresses in the surface generated, because of delayed generation of martensite in the part.

Experimental Study of Rewetting Phenomena

  • Chung, Moon-Ki;Lee, Young-Whan;Cha, Jong-Hee
    • Nuclear Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1980
  • 냉각재 상실사고에 따르는 rewetting현상을 연구하기 위하여 대기압에서 단일가열관을 사용한 재관수 실험을 수행하였다. Yamanouchi 이론을 바탕으로한 1차원 및 2차원 열전도 해석을 본 실험조건과 일치시키기 위해 수정하여 실험결과와 비교 검토하였다. 하부재관수 해석에서는 unrewetted 구역에서 증기의 열전달이 고려 되어야 한다는 것을 알았다. 실험을 통해 revetting속도는 시험관의 초기벽온도, 냉각재 유량, 냉각재 온도에 따라 달라진다는 것을 알았다. rewetting 온도와 열전달 계수를 평가하기 위한 보다 나은 방법의 개발이 필요하다.

  • PDF

전투차량 냉각수 호스 분리현상 개선에 관한 연구 (A Study on the Improvement of the Separation Phenomenon of Coolant Hose in the Tracked Combat Vehicle)

  • 강태우;신헌용;류정민;박경철;김재규;이헌기
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.59-64
    • /
    • 2018
  • In general, tracked combat vehicles require excellent output performance of a power unit system to drive on special terrains and in extreme environmental conditions. However, high temperature and pressure are readily applied to the coolant hose in the power unit of the vehicles during high-speed driving under extreme road and weather conditions. These driving conditions can cause the separation phenomenon of the coolant hose in the power unit and consequentially engine overheating during driving. Therefore, a newly designed decompression device for the coolant hose has been proposed and manufactured to solve these problems in the present study. To validate of the newly proposed decompression device, the input and output pressures were measured under the before- and after-improvement conditions using experimental methods for different engine RPMs. In addition, the pre-heater temperature was measured under both conditions. From the experimental results, we expect that the current investigation can help to improve the driving performance of tracked combat vehicles.