• 제목/요약/키워드: Coolant Temperature

검색결과 764건 처리시간 0.031초

연료전지 자동차 열방출 시스템의 설계 (Design of a Heat Release System for Fuel Cell Vehicles)

  • 김성철;박민수;정승훈;윤석호;김민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

연료전지 자동차 열방출 시스템의 설계 (Design of a Heat Release System for Fuel Cell Vehicles)

  • 김민수;김성철;박민수;정승훈;윤석호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF

추력 30톤급 연소기의 냉각 성능

  • 조원국;이수용;조광래
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.197-204
    • /
    • 2004
  • 30톤급 지상시험용 연소기의 재생냉각 유로의 설계를 수행하였다. 사용된 1차원 설계 프로그램은 NAL에서 보고한 고압 연소시험과 모비스 ECC엔진의 물냉각 성능 데이터와 비교하여 열특성 예측 성능을 검증하였다. 본 설계 조건과 유사한 고압에서의 열유속 예측 성능을 확인하였고 물냉각 성능 역시 참고문헌에서 제시하는 것과 동일한 수준의 정확성을 가지는 것으로 검증되었다. 열차폐 코팅 효과를 생략할 경우, 내벽의 최고온도는 약 720 K이 될 것으로 예상되며 냉각유체와 접하는 금속부의 온도는 코킹온도 이하일 것으로 확인되었다. 열차폐 코팅이 적용되었을 경우, 냉각유체 Jet-A1의 예상되는 온도상승은 약 100 K이다.

  • PDF

Modification of Reference Temperature Program in Reactor Regulating System

  • Yu, Sung-Sik;Lee, Byung-Jin;Kim, Se-Chang;Cheong, Jong-Sik;Kim, Ji-In;Doo, Jin-Yong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.404-410
    • /
    • 1998
  • In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold leg temperature was very close to the technical specification limit of 298$^{\circ}C$ during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended.

  • PDF

하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구 (Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle)

  • 정수진;정진우;하승찬
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계 (Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제58권4호
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System)

  • 박경석;원종필;정동화
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.

CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계 (Optimization of Fuel-cell stack design using CFD-ACE)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

가솔린 기관의 시동시 연료분사스킵이 유해배출가스 저감에 미치는 영향 (The Effects of Fuel Injection Skips on the Reduction of Harmful Exhaust Gases during an SI Engine Starting)

  • 김성수
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.5-11
    • /
    • 2006
  • During the SI engine starting up, starting conditions directly contribute to the harmful emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame Ionization Detector(FRFID). The result showed that HC emissions, which were generated during initial stage of the starting, could be reduced by coolant temperature and fuel injection skips. And through the vehicle test of ECE15+EUDC, it is convinced that the optimized fuel injection skip method according to coolant temperatures have favourable effects on the reduction of harmful exhaust emissions including HC during the SI engine start.

  • PDF

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.