• Title/Summary/Keyword: Coolant Pump

Search Result 204, Processing Time 0.025 seconds

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

Flow Analysis of Water Pump for Clean Disel Engine Application (클린 디젤엔진용 워터펌프 유동해석)

  • Lee, Dongju;Kim, Taeyoung;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.61-65
    • /
    • 2014
  • Pressure distribution around rotating impeller blades in centrifugal pump has been main issue for design of efficient and high performance automotive water pump. In addition, pressure losses of inlet water pipes should be considered to reduce additional pressure drop and design high performance engine cooling system. In this paper, pressure distribution inside water pump and pressure drop between inlet and outlet of water pump are investigated numerically to design plastic water pump for clean diesel engine application. And the inlet geometry of water pump was considered to analysis the effect of inlet water pipe geometry on pressure distribution around impeller blades and outlet pressure. The prediction results are compared with experimental data to validate and determine optimal operation condition without water pump cavitation. Major design parameters such as blade angle, volute geometry, system pressure, and coolant flow rate are considered to confirm applying possibility of plastic blades to the clean diesel engine.

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Flow Rate Characteristics of Two Parallel Pumping System (두 대의 펌프가 병렬로 설치되는 계통에서의 유량 특성)

  • Park, Y.C.;Chi, D.Y.;Seo, K.W.;Yoon, H.G.;Park, J.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.579-586
    • /
    • 2011
  • During a reactor normal operation, a primary coolant was designed to remove the fission reaction heat of the reactor. When one pump is failure and the other pump shall supply the cooling water to cool the reduced power, it is necessary to estimate how much flow will be supplied to cool the reactor. We carried a flow net work analysis for two parallel pumping system as based on the piping net work of the primary cooling system in HANARO. As result, it is estimated that the flow of one pump increased than the rated flow of the pump below the cavitation critical flow.

  • PDF

The Design of Flat Linear Induction Pump for Transferring Reactor Coolant (원자로 냉각재 이송을 위한 평편형 리니어 유도펌프의 설계)

  • Jang, S.M.;Wu, J.S.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.10-12
    • /
    • 1998
  • Pumping liquid metal in nuclear power plant application by conventional centrifugal pumps pose difficulties such as bearing wear out at high temperatures and leak proof sealing of the liquid metal. MHD machine is obtained by replacing solid conducting secondary of conventional motors with ionized gas or liquid metal. It is used for reactor cooling pump because of construction simplicity, perfect sealing and easy operation/maintenance MHD pump is complicated because it includes electromagnetic and hydrodynamic phenomena. The principle of MHD Pumps is described in this paper. We design small laboratory size Flat Linear Induction Pump(FLIP) for transferring sodium.

  • PDF

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.